EasyLogic[™] PM2200 系列

用户手册

NHA2778903-06 04/2020

法律声明

施耐德电气品牌以及本指南中涉及的施耐德电气及其附属公司的任何商标均是施耐德 电气或其附属公司的财产。所有其他品牌均为其各自所有者的商标。本指南及其内容 受适用版权法保护,并且仅供参考使用。未经施耐德电气事先书面许可,不得出于任 何目的,以任何形式或方式(电子、机械、影印、录制或其他方式)复制或传播本指 南的任何部分。

对于将本指南或其内容用作商业用途的行为,施耐德电气未授予任何权利或许可,但 以"原样"为基础进行咨询的非独占个人许可除外。

施耐德电气的产品和设备应由合格人员进行安装、操作、保养和维护。

由于标准、规格和设计会不时更改,因此本指南中包含的信息可能会随时更改,恕不 另行通知。

在适用法律允许的范围内,对于本资料信息内容中的任何错误或遗漏,或因使用此处 包含的信息而导致或产生的后果,施耐德电气及其附属公司不会承担任何责任或义 务。

安全信息

重要信息

在尝试安装、操作、维修或维护本设备之前,请对照设备仔细阅读这些说明,以使 自己熟悉该设备。下列专用信息可能出现在本手册中的任何地方,或出现在设备 上,用以警告潜在的危险或提醒注意那些对某过程进行阐述或简化的信息。

这两个符号中的任何一个与"危险"或"警告"安全标签一起使用,指示存在电击危险,若不遵循相关说明,可能会导致人身伤害。

这是安全警示符号。它用来提醒您可能存在的人身伤害危险。请遵守与此符号一起出现的全部安全信息,以避免可能的人身伤害或死亡。

▲▲危险

危险表示存在危险情况,如果不避免,会导致死亡或严重人身伤害。

未按说明操作可能导致人身伤亡等严重后果。

▲警告

警告表示存在潜在的危险情况,如果不避免,可能导致死亡或严重人身伤害。

▲小心

小心表示存在潜在的危险情况,如果不避免,可能导致轻微或中度人身伤害。

注意

注意用于提醒注意与人身伤害无关的事项。

请注意

电气设备应仅由经过认证的技术人员进行安装、操作、维护和维修。Schneider Electric对因使用本说明而产生的任何后果不承担责任。经过认证的技术人员是指该人员拥有与电气设施的架设、安装和操作相关的技能和知识,并且受过安全培训,能够识别和避免所涉及的危险。

注意事项

FCC

经测试,本设备符合 FCC 规则第 15 部分对 A 类数字设备的限值规定。这些限值 旨在合理地防止当设备在商业环境中运行时产生有害干扰。本设备会产生、利用并 发射无线射频能量。如果不按说明书安装和使用本设备,有可能对无线电通信产生 有害干扰。在住宅区内使用本身可能会产生有害干扰,这种情况下,用户需要自费 采取避免干扰的措施。

用户注意:任何未经 Schneider Electric 批准的变更或修改可导致用户无权限操作设备。

本数字设备遵从CAN ICES-3 (A) /NMB-3(A)标准。

目录

安全防范措施	9
简介	
测量仪概述	
测量仪功能	
功能汇总	
测量参数	
电能	
不可复位电能	
需量	
瞬时	
电力质量	
数据记录	13
输入∕输出	
其它测量	13
数据显示和分析工具	13
Power Monitoring Expert	
Power SCADA Operation	າ13
测量仪配置	14
硬件参考	
PM2200 测量仪型号和配件.	
补充说明	
测量仪接线注意事项	
直接连接电压限值	
平衡系统注意事项	
RS-485 接线	
脉冲输出	
测量仪显示屏	
显示屏概述	
LED 指示灯	
报警/电能脉冲指示灯	
心跳/串行通讯指示灯	
通知图标	
测量仪的显示语言	
测量仪屏幕导航	
导航符号	
测量仪屏幕菜单概述	21
设置显示屏	21
基本设置	
使用显示屏配置基本设置参数	t
使用显示屏配置高级设置参数	24
设置速率	
设置区域设置	
设置屏幕密码	
丢失密码	
设置时钟	
快照	27
查看快照页面	27

	快照设置	27
	改型	27
	改型设置	28
	配置收藏页面	28
	自动复位配置	29
I/	/O 模块	30
	模拟输入应用	30
	模拟输出应用	32
	状态输入 (DI) 应用	34
	数字输出应用	35
	继电器输出应用	36
	IO LED 指示灯	38
‡	日敬	30
1	K 当	
	」K ≡ 100,22	30
	1 K 目 天 王	
	平元]K言	30
	的用乎/山阳言	30
	奴丁N言	30
	□用数寸1№音	40 10
	初田派言 	0+… ۱۸
	起山栉低了 0 定值 (标准) 1 量床下的小内	4 0
	可田長冲退数	/12
	马用你把我看	<u>۲</u> ۲
	1K 言 化 几级	44 11
	1K 言 以且 帆 心	44
	1日小月 12 音 1日小 奋	40
	使用亚小州癿直拟言泪小月	40
	使用 ION Setup 能直报音组小灯	40
	拟音业小型进入 海洋的坦敬列圭和坦敬压由记录	47
	微伯时报言列农种报言历文记求 捉教计粉盟	41 مر
	扱言り数命 在田 ION Setup 有位地数	4040
١٢	使用 ION Setup 夏位报音	40
Y	则重仪记求	49
	查看概述	49
	设置数据日志	49
	使用 ION Setup 保存数据日志内容	49
	报警日志	50
Ų	则量和计算	51
	测量仪初始化	51
	实时读数	51
	能源计量	51
	基于象限的 VARh	51
	最小最大值	51
	功率需量	52
	功率需量计算方法	52
	区块间隔需量	52
	同步需量	53
	热需量	53
	电流需量	54
	预测需量	54

峰值需量	54
计时器	54
复费率	56
复费率实施	56
命令模式概述	56
日期时间模式概述	57
日期时间模式费率有效性	57
日期时间费率创建方法	57
四段费率系统的费率配置示例	57
输入模式概述	58
输入控制模式的数字输入分配	58
有效费率控制模式	59
使用显示屏配置日期时间模式费率	59
使用显示屏配置输入模式费率	60
电力质量	62
谐波概述	62
总谐波失真 %	62
谐波成分计算	62
THD% 计算	62
显示谐波数据	62
维护与升级	63
维护概述	63
排除 LED 指示灯的故障	63
测量仪存储器	63
测量仪电池	63
查看固件版本、型号和序列号	63
固件升级	64
技术协助	64
验证精度	
查看测量仪精度	
着度测试要求	
验证精度测试	
精度验证测试所需的脉冲计算	67
精度验证测试所需的总功率计算	67
精度验证测试所需的错误百分比计算	67
精度验证测试点	68
电能脉冲注意事项	68
电压互感器和电流互感器注意事项	68
计算示例	69
典型测试误差源	70
功率、电能和功率因数	71
功率、电能和功率因数	71
电流相角与电压相角的偏移	71
真实功率、无功功率和视在功率(PQS)	71
功率因数 (PF)	
功率因数符号约定	
功率因数最小最大值约定	73
功率因数寄存器格式	73
规格	75
2-1P	

任何安装、接线、测试和维修的执行都必须符合所有当地和全国性的电气规范。

电	击、爆炸或弧光的危险
•	请穿戴好人员保护设备 (PPE),并遵守电气操作安全规程。在美国,请遵 NFPA 70E、CSA Z462 或适用的当地标准。
•	开始在设备上工作之前,请先关闭设备的所有电源。
•	务必使用额定电压值正确的电压感应设备,以确认所有电源均已关闭。
•	请遵循相关安装说明书"接线"部分中的指南。
•	除非经测试认定,否则应将连接到多台设备的通讯和 I/O 接线视为危险的有电设备。
•	切勿超过设备的最高限值。
•	切勿短路电势/电压互感器 (PT/VT) 的二次回路。
•	切勿使电流互感器 (CT) 开路。
•	务必使用接地的外部电流互感器进行电流输入。
•	请勿根据测量仪数据确认电源己关闭。
•	接通设备电源前,重新装回所有装置、门和防护罩。
未	按说明操作可能导致人身伤亡等严重后果。

______▲警告

不符合设计意图的操作

- 某些关键控制或保护应用中的人身或设备安全依赖于控制电路运行,请勿将 此设备用于此等目的。
- 如果显示屏的右上角出现扳手图标或测量仪状态下的值不是"确定",则请勿使 用本设备。

未按说明操作可能导致人身伤亡或设备损坏等严重后果。

▲ 警告 潜在降低系统的可用性、完整性和保密性 • 更改默认密码以防止对设备设置和信息进行未经授权的访问。 • 在可能的情况下,禁用未使用的端口/服务和默认帐户,以最大程度地减少恶意入侵的途径。 • 烙联网设备置于多层网络防护下(例如 防火塘 网段及网络入侵检测和保

- 将联网设备置于多层网络防护下(例如,防火墙、网段及网络入侵检测和保护)
- 采用网络安全最佳实践(例如:最低权限、分割责任),以帮助防止未经授权的泄露、丢失或修改数据和日志,或中断服务。

未按说明操作可能导致人身伤亡或设备损坏等严重后果。

简介

测量仪概述

测量仪对满足您电能监控和成本管理应用的苛刻需求具有十分重要的意义。 PM2200系列产品中的所有测量仪均符合 Class 1 或 Class 0.5S 精度标准,并具有 高质量、安全可靠和经济实惠等特点,且外形紧凑,易于安装。

测量仪功能

PM2200系列测量仪支持多种功能,部分功能如下所列:

- 自动引导 LCD 显示屏和导航
- 电能核算和平衡
- 测量真实功率因数和位移功率因数
- 有功、无功和视在电能读数
- 含有时标的瞬时参数的最小值/最大值。
- 网络安全:测量仪允许通过前面板钥匙禁用 RS-485 端口,防止未经授权访问。这一功能还可以用于在软件系统中的节点可用性受限的情况下在 RTU 设备之间切换。
- 快照:测量仪功能包括创建平均电压、平均电流、总有功功率和流出电能的快照。
- 抑制电流:这是测量仪开始正常工作的最小电流。可将测量仪配置为不测量电路中感应/辅助负载电流。可以通过前显示屏和通讯设置抑制电流选项。抑制电流的范围为 5 mA 至 99 mA。如果应用值高于抑制值,测量仪显示测量结果。默认抑制电流为 5 mA。

您可以将该测量仪用作独立设备,但当它用作电能管理系统的一部分时,才能完全 发挥其广泛的功能。

有关 PM2200 测量仪的应用、功能详情、最大电流和完整规格,请参见 www.se.com 网站中的 EasyLogic PM2000 系列技术数据表。

功能汇总

参数	PM2210	PM2220	PM2230
Wh 精度等级	Class 1	Class 1	Class 0.5S
VARh 精度等级	1.0	1.0	1.0
每个周期的采样率	64	64	64
 电流: 每相和3相平均值 计算的中性相电流 	¥	✓	~
电压: • 相电压 - 每相和 3 相平均值 • 线电压 - 每相和 3 相平均值	✓	✓	✓
功率因数 • 每相和 3 相总值	真实功率因数	真实功率因数 位移功率因数	真实功率因数 位移功率因数
频率	\checkmark	\checkmark	✓
 功率: 有功功率 (kW) - 每相值和总值 视在功率 (kVA) - 每相值和总值 	~	✓	✓

参数	PM2210	PM2220	PM2230
• 无功功率 (KVAR) - 每相值和总值			
3 相不平衡	电流	电流	电流
		电压	电压
 需量参数 (kW、kVA、kVAR、l) 上一需量 当前需量 预测需量 峰值需量:峰值需量时标1 	✓ (无时标)	1	1
电能:kWh、kVAh、kVARh (4 象限)	流出	流出	流出
 流出(抽入/正问) 流入(输出/正向) 	流入	流入	流入
		总计1	总计1
		净值1	净值1
		上次清除(旧)1	上次清除(旧)1
 THD: 相电压 线电压 每相电流 	✓ 	✓	✓
单个谐波	—	高达第15个单个谐波	高达第 31 个单个谐波
含有时标的最小值/最大值 • 平均线电压 • 平均相电压 • 平均电流 • 频率 • 总有功功率 • 总视在功率 • 总无功功率 • 总功率因数	_	✓	✓
通讯	POP	RS-485 Modbus RTU	RS-485 Modbus RTU
可扩展模拟 IO 模块(1 输入和 1 输出)	—	_	✓
可扩展模拟 IO 模块 (2 输入和 2 输出)	—	_	✓
可扩展数字 IO 模块 (2 输入和 2 输出)	—	—	✓
可扩展继电器输出模块(2数字输入和2继电器输出)	—	—	✓
 数据记录 电能(W、VA、VAR):流出/流入 功率:有功/视在/无功 需量(W、VA、VAR、A):上一/当前/预测 	_	_	✓
改型 用于配置旧通讯数据型号。	-	✓ 	✓
*	-	✓	✓
复费率	_	—	✓
自动复位1	_	✓	✓

测量参数

电能

该测量仪可提供双向的4象限、Class 1 / Class 0.5S 精度电能测量功能。

^{1.} 指示只能通过通讯读取的特性

该测量仪将所有累计的有功、无功和视在电能参数存储在永久性存储器中:

- kWh、kVARh、kVAh(流出值)
- kWh、kVARh、kVAh(流入值)
- kWh、kVARh、kVAh(流入+流出值)
- kWh、kVARh、kVAh(流入-流出值)

注:根据所选的电能范围,当任何电能参数在 999.99 溢出时,所有电能参数值将被复位。

不可复位电能

流出和流入的不可复位电能参数包括 Wh、VAh 和 VARh。不可复位电能参数仅在显示屏上"诊断"页面下的"维护"屏幕中可用。

这些参数不可通过显示屏或通讯复位。这些不可复位电能值将在达到溢出限制的最大值时自动溢出。

注:只能使用命令复位子系统和测量仪初始化清除不可复位电能参数。

命令	累计电能	不可复位电能	旧电能
复位子系统	清除	清除	清除
初始化	清除	清除	清除
复位所有电能	清除	不清除	不清除(随着累计电能 更新)
复位所有累计电能	清除	不清除	不清除(随着累计电能 更新)

需量

该测量仪在最大值(峰值)需量出现时可提供上次、当前、预测、最大(峰值)需量值和时标。

该测量仪支持标准需量计算方法,包括滑动区块、固定区块、滚动区块以及热量和 同步方法。

峰值需量寄存器可手动复位 (受密码保护)。

需量测量包括:

- W、VAR、VA 总需量
- 平均电流需量

瞬时

该测量仪为以下需量提供高精度的1秒平均值测量,其中包括真有效值、每相值和 总计值:

- 每相和平均电压 (线电压、相电压)
- 每相和平均电流以及中性相电流

注:中性点电流是计算得出的。

- 每相和总功率 (VA、W、Var)
- 每相及平均真实和位移功率因数
- 系统频率
- 所有三相的电压不平衡和电流不平衡的每相值和最大值

电力质量

该测量仪可为所有电压和电流输入提供完整的谐波失真测量、记录和实时报告,其中 PM2220 可以高达 15 次谐波, PM2230 可以高达 31 次谐波。

可用的电力质量测量如下:

- PM2220:单个奇谐波可以高达 15 次 (每相电压和电流)
- PM2230:单个奇谐波可以高达 31 次 (每相电压和电流)
- (根据选择的系统配置显示线或相)电流和电压总谐波失真 (THD%)

数据记录

测量仪存储所有瞬时值和每相的每个新的最小值和最大值(带日期和时标) 该测量仪还可记录以下数据:

- 报警(带1秒时标)
- 为数据记录配置的参数
- 数据、报警历史记录、诊断日志

输入/输出

测量仪支持可选输入和输出功能。

其它测量

测量仪记录的其他测量值包括数个计时器。

这些计时器包括:

- I/O 计时器显示输入或输出的通电持续时间。
- 运行计时器显示测量仪的通电持续时间。
- 有效负载计时器根据负载计时器设定点设置的指定最小电流显示连接负载的持续时间。

数据显示和分析工具

Power Monitoring Expert

EcoStruxure[™] Power Monitoring Expert 是一款用于电力管理应用的完整管理软件 包。

该软件将收集和整理从您设施的电网中采集到的数据,并通过简洁直观的 Web 界面将其显示为有意义且可操作的信息。

Power Monitoring Expert 与网络中的设备进行通讯,并提供以下信息:

- 通过多用户 Web 端口实时监控
- 趋势图和集成信息
- 电力质量分析和遵从性监控
- 预配置和自定义的报告

有关如何将测量仪添加到系统中以进行数据收集和分析的说明,请参见 EcoStruxure[™] Power Monitoring Expert 在线帮助。

Power SCADA Operation

EcoStruxure[™] Power SCADA Operation 是一款专为大型设施和关键基础设施操作 而设计的完整的实时监控和控制解决方案。

它与您的测量仪进行通讯,旨在实现数据采集和实时控制。您可使用 Power SCADA Operation 完成以下任务:

- 系统监管
- 实时趋势和历史趋势、事件记录和波形捕获

• 基于个人电脑的自定义报警

有关如何将测量仪添加到系统中以进行数据收集和分析的说明,请参见 EcoStruxure[™] Power SCADA Operation 在线帮助。

测量仪配置

可以通过显示屏或 PowerLogic[™] ION Setup 执行测量仪配置。

ION Setup是一款测量仪配置工具,可从www.se.com免费下载。

请参见 ION Setup 在线帮助或"Device Configuration Guide"中的 ION Setup。要下 载副本,请转到 www.se.com,并搜索 ION Setup" Device Configuration Guide"。

硬件参考

PM2200 测量仪型号和配件

本测量仪有多种不同型号,包括可以提供不同安装选项的可选配件。

测量仪型号

型号	产品物料号	描述
PM2210	METSEPM2210	前面板安装、外形尺寸 96×96 mm,具备 THD 和 POP 功能的 EasyLogic VAF 电力参数与电能测量仪。符合精度等级 1。
PM2220	METSEPM2220	前面板安装、外形尺寸 96×96 mm,具备 RS-485 通讯和高达 15 次 奇谐波的 EasyLogic VAF 电力参数与电能测量仪。符合精度等级 1。
PM2230	METSEPM2230	前面板安装、外形尺寸 96×96 mm,具备 RS-485 通讯和高达 31 次 奇谐波的 EasyLogic VAF 电力参数与电能测量仪。符合精度等级 0.5S。

测量仪配件

型号	产品物料号	描述
双通道数字输入输出模块	METSEPM2KDGTLIO22 和 METSEPM2KDGTLIO22D	具有双通道输入和输出的数字 I/O 模块。
双通道模拟输入输出模块	METSEPM2KANLGIO22 和 METSEPM2KANLGIO22D	具有双通道输入和输出的模拟 I/O 模块。
单通道模拟输入输出模块	METSEPM2KANLGIO11 和 METSEPM2KANLGIO11D	具有单通道输入和输出的模拟 I/O 模块。
双通道数字输入和继电器 输出模块	METSEPM2K2DI2RO 和 METSEPM2K2DI2ROD	具有双通道数字输入和继电器输出的继电器模块。

注: 只有 PM2230 型测量仪支持 I/O 模块。

关于测量仪安装转接器的可用信息,请参阅 www.se.com 中的 PM2000 系列目录 页面或咨询当地 Schneider Electric 代表。

补充说明

本文件旨在与随测量仪及配件一并提供的安装工作表一同使用。

有关安装信息,请参见设备的安装工作表。

关于您的设备、选件和配件的信息,请访问 www.se.com 中的产品 目录页面。

关于产品的最新信息,请登录 www.se.com 下载更新的文档或联系 当地 Schneider Electric 代表。

测量仪接线注意事项

直接连接电压限值

如果电力系统的线间电压或相电压未超过测量仪的直接连接最大电压限值,则您可以将测量仪的电压输入直接连接到电力系统的相电压线。

测量仪的电压测量输入由制造商规定,最高为277 VL-N/480 VL-L。但是,直接连接允许的最大电压可能较低,这取决于当地电气法规与规定。根据安装类别 II / III,测量仪电压测量输入不得超过277 VL-N / 480 VL-L(CAT III)和347 VL-N / 600 VL-L(CAT III)。

如果您的系统电压大于指定的直接连接最大电压,则必须使用 VT (电压互感器) 来降低电压。

电力系统说明	测量仪设置		符号	直连最大值 (UL / IEC)		VT 编号 (如果需
	显示 (测量 仪)	显示(通讯)		安装类别 Ⅲ	安装类别Ⅱ	女)
单相两线相电压	1PH2W LN	1PH 2Wire L-N		≤ 277 V L-N	≤ 347 V L-N	1个电压互感器
单相两线线电压	1PH2W LL	1PH 2Wire L-L		480 V L-L	600 V L-L	1 个电压互感器
单相3线线对 线,带零线	1PH3W LL With N	1PH 3Wire L-L with N		≤ 277 V L-N / 480 V L-L	≤ 347 V L-N / 600 V L-L	2个电压互感器
3相3线无接地 三角形	3PH3W Dlt Ungnd	3PH 3Wire Ungrounded Delta		480 V L-L	600 V L-L	2个电压互感器
3相3线角接地 三角形	3PH3W DIt Crnr Gnd	3PH 3Wire Corner Grounded Delta	<u>-</u>	480 V L-L	600 V L-L	2个电压互感器
3相3线无接地 星形	3PH3W Wye Ungnd	3PH 3Wire Ungrounded Wye		480 V L-L	600 V L-L	2个电压互感器
3相3线接地星 形	3PH3W Wye Gnd	3PH 3Wire Grounded Wye		480 V L-L	600 V L-L	2个电压互感器
3相3线阻抗接 地星形	3PH3W Wye Res Gnd	3PH 3Wire Resistance Grounded Wye		480 V L-L	600 V L-L	2个电压互感器

电力系统说明	测量仪设置		符号	直连最大值 (UL / IEC)		VT 编号 (如果需
	显示 (测量 仪)	显示(通讯)		安装类别 Ⅲ	安装类别Ⅱ	(安)
3相4线中心抽 头式开放三角形	3PH4W Opn Dlt Ctr Tp	3PH 4Wire Center-Tapped Open Delta	Letter "	240 V L-N / 480 V L-L	240 V L-N / 480 V L-L	3个电压互感器
3相4线中心抽 头式三角形	3PH4W Dlt Ctr Tp	3PH 4Wire Center-Tapped Delta	Lutter "	240 V L-N / 480 V L-L	240 V L-N / 480 V L-L	3个电压互感器
3 相 4 线无接地 星形	3PH4W Wye Ungnd	3PH 4Wire Ungrounded Wye		≤ 277 V L-N / 480 V L-L	≤ 347 V L-N / 600 V L-L	3个电压互感器或 2个电压互感器
3相4线接地星 形	3PH4W Wye Gnd	3PH 4Wire Grounded Wye		≤ 277 V L-N / 480 V L-L	≤ 347 V L-N / 600 V L-L	3个电压互感器或 2个电压互感器
3 相4 线阻抗接 地星形	3PH4W Wye Res Gnd	3PH 4Wire Resistance Grounded Wye		≤ 277 V L-N / 480 V L-L	≤ 347 V L-N / 600 V L-L	3 个电压互感器或 2 个电压互感器

平衡系统注意事项

在监控平衡 3 相负载的情况下,可以选择仅连接需要测量的相上的 1 个或 2 个电流 互感器,然后配置测量仪以便它计算未连接的电流输入上的电流。

注:对于平衡4线星形系统,测量仪的计算假设没有电流流经零线。

平衡3相星形系统配备2个电流互感器

计算未连接的电流输入的电流,使所有三相电流的矢量和等于零。

平衡3相星形或三角形系统配备1个电流互感器

计算未连接的电流输入的电流,使其幅值和相角相同并进行相等分配,并使所有3相电流的矢量和等于0。

注:必须始终在3相4线中心抽头式三角形或中心抽头式开放三角形系统中使用3个电流互感器。

RS-485 接线

在点对点配置中,通过将一台设备的(+)和(-)端子连接到下一台设备的对应(+)和(-)端子的方法,来连接 RS-485 总线上的设备。

RS-485 电缆

使用屏蔽 2 双绞线或 1.5 双绞线 RS-485 电缆来连接设备。使用1 根双绞线来连接 (+) 和 (-) 端子, 然后使用其它绝缘线来连接 C 端子.

RS-485 总线上连接的设备的总距离不得超过 1000 米 (3280 英尺)。

RS-485 端子

С	共用。可以提供数据正极和数据负极信号的电压参考(0伏特)
⇔	屏蔽。将裸线连接到此端子,有助于抑制可能出现的信号噪音。仅将屏蔽接线的一端(主设备或最后一个从设备,但不能同时包含两者)接地。
-	数据负极。可以传输任按收反转数据信号。
+	数据正极。可以传输、接收非反转数据信号。

注: 如果 RS-485 网络中的某些设备没有 C 端子,请使用 RS-485 电缆中的裸 线 将 C 端子从测量仪连接到不含 C 端子的设备上的屏蔽端子。

脉冲输出

测量仪配备1个脉冲输出端口(D1+、D1-)。

可以配置脉冲输出,以供以下应用场合使用:

• 电能脉冲应用,此时接收设备通过对来自测量仪脉冲输出端口的 k_h 脉冲进行 计数,从而确定电能使用情况。

一次脉冲输出可以处理低于或等于 40 V DC (最高达 20 mA)的电压。对于更高电压应用,请在开关电路中使用外部继电器。

测量仪显示屏

显示屏概述

显示屏(集成或远程)使您能够使用测量仪来执行各种任务,比如设置测量仪、显示数据屏幕、确认报警或执行复位。

LED 指示灯

LED 指示灯提示或通知您测量仪的活动情况。

报警/电能脉冲指示灯

报警/电能脉冲指示灯可配置用于报警通知或电能脉冲。

如果配置用于报警通知,则此指示灯会每秒闪烁一次,指示触发高、中或低优先级 报警。该指示灯可为激活的报警状况或未激活但未确认的高优先级报警提供视觉指 示。

如果配置用于电能脉冲,则此指示灯将以与电能消耗量成比例的速率闪烁。此法通常用来验证电力参数测量仪的精度。

心跳/串行通讯指示灯

心跳/串行通讯指示灯闪烁指示测量仪的工作状态以及 Modbus 串行通讯状态。

指示灯稳定慢速闪烁表示测量仪在工作。当测量仪通过 Modbus 串行通讯端口进行通讯时,该指示灯不稳定快速闪烁。

您无法将此指示灯配置为用于其它目的。

注:心跳指示灯始终点亮且不闪烁则表示硬件有问题。

通知图标

为了提示您有关测量仪的状态或事件,在显示屏左上角或右上角显示有通知图标。

图标	说明
	扳手图标表示电力参数测量仪处于过压状态或需要维护。它还可以指 示电能指示灯正处于过运行状态。
\triangle	报警图标表示报警条件已发生。

测量仪的显示语言

如果您的测量仪配备有显示屏,则您可从多种语言中选择一种语言来显示测量值: 可选语言如下:

英语

•

- 法语
- 西班牙语
- 德语
- 葡萄牙语
- 俄语
- 中文
- 土耳其语

测量仪屏幕导航

利用测量仪按钮和显示屏幕,可以导航数据和配置屏幕,并配置测量仪设置参数。

导航符号

导航符号指示测量仪显示屏上相关按钮的功能。

符号	说明	操作
•	向右箭头	向右滚动并显示更多菜单项目或将光标向右移动一个字符
	向上箭头	退出屏幕并返回上一级

符号	说明	操作
•	小的向下箭头	在选项列表中向下移动光标或显示下面更多选项
	小的向上箭头	在项目列表中向上移动光标或显示上面更多项目
•	向左箭头	向左移动光标一个字符
+	加号	增大突出显示的值或显示列表中的下一项。
-	减号	显示列表中的前一项

到达最后一个屏幕时,再次按向右箭头可循环浏览屏幕菜单。

测量仪屏幕菜单概述

所有测量仪屏幕均已根据其功能进行了逻辑分组。 通过首先选择包含有测量仪屏幕的第1级(顶级)菜单即可访问任何可用的屏幕。

第1级屏幕菜单—IEEE标题 [IEC标题]

设置显示屏

您可以更改显示屏幕的设置,例如对比度、背光超时和屏幕超时设置。

- 1. 导航至维护>设置。
- 2. 输入设置密码(默认为"0"),然后按确定。
- 3. 导航至人机界面 > 屏幕。
- 4. 移动光标指向您要修改的参数,然后按编辑。
- 5. 根据需要修改参数,然后按确定。

6. 移动光标指向您要修改的下一个参数,按编辑进行更改,然后按确定。

- 7. 按向上箭头退出。
- 8. 按是保存更改。

可以使用显示屏执行的显示屏设置

参数	数值	说明
对比度	1 - 9	增大或减小该值可提高或降低显示对比度。
背光持续(分 钟)	0 - 60	设置不活动时段持续多长时间后背光将关闭(单位为分钟)。将此值设置为"0"则禁用背光超时功能(即背光始终打开)。
屏幕持续(分 钟)	0 - 60	设置不活动时段持续多长时间后屏幕将关闭(单位为分钟)。将此值设置为"0"则禁用屏幕超时功能(即显示屏始终打开)。

要使用 ION Setup 配置显示屏,请参见 ION Setup 在线帮助或ION Setup"Device Configuration Guide"(可从 www.se.com 下载)中的"PM2000" 主题。

基本设置

使用显示屏配置基本设置参数

可以使用显示屏配置基本测量仪参数。

正确配置测量仪的基本设置参数对于精确测量和计算是非常重要的。使用基本设置 屏幕可以定义测量仪所监控的电力系统。

如果已配置标准(1秒)报警,而后您对测量仪的基本设置进行了更改,则所有报 警都将被禁用以防触发不必要的报警操作。

不符合设计意图的设备操作 验证所有标准报警设置是否正确,必要时进行调整。 重新启用所有已配置的报警。
验证所有标准报警设置是否正确,必要时进行调整。重新启用所有已配置的报警。
• 重新启用所有已配置的报警。
未按说明操作可能导致设备损坏等严重后果。

- 1. 导航到维护>设置。
- 2. 输入设置密码(默认为"0"),然后按确认。
- 3. 导航到表计>基本。
- 4. 移动光标指向您要修改的参数,然后按编辑。
- 5. 根据需要修改参数,然后按确定。
- 6. 移动光标指向您要修改的下一个参数,按编辑进行更改,然后按确定。

7. 按是保存更改。

可以使用显示屏设置的基本设置参数

数值	描述			
电力系统				
选择测量仪所连接的电力系统类型(电源互感器)。				
1PH2W LN	单相2线线对中性点			
1PH2W LL	单相2线线对线			
1PH3W LL with N	单相3线线对线,带零线			
3PH3W Dlt Ungnd	3相3线无接地三角形			
3PH3W Dlt Crnr Gnd	3相3线角接地三角形			
3PH3W Wye Ungnd	3相3线无接地星形			
3PH3W Wye Gnd	3相3线接地星形			
3PH3W Wye Res Gnd	3相3线阻抗接地星形			
3PH4W Opn Dlt Ctr Tp	3相4线中心抽头式开放三角形			
3PH4W Dlt Ctr Tp	3相4线中心抽头式三角形			
3PH4W Wye Ungnd	3相4线无接地星形			
3PH4W Wye Gnd	3相4线接地星形			
3PH4W Wye Res Gnd	3相4线阻抗接地星形			
电压互感器连接 选择连接到电力系统的电压互感器 (VT) 数量。				
Direct Con	直连,不使用电压互感器			
2VT	2个电压互感器			
3VT	3个电压互感器			
VT 原边 (V)				
1 to 1,000,000	输入电压互感器一次电路的电压值,单位为伏特。			
VT 次边 (V)				
100, 110, 115, 120	选择电压互感器二次电路的电压值,单位为伏特。			
终端电流互感器 定义连接到测量仪的电流互感器 (CT) 数量以及所连接到的终端。				
11	1个电流互感器连接到 11 终端			
12	1个电流互感器连接到 12 终端			
13	1 个电流互感器连接到 I3 终端			
11 12	2 个电流互感器连接到 11、12 终端			
12 13	2 个电流互感器连接到 11、13 终端			
11 13	2 个电流互感器连接到 I2、I3 终端			
11 12 13	3 个电流互感器连接到 11、12、13 终端			
CT 原边 (A)				
1 to 32767	输入电流互感器一次电路的电流值,单位为安培。			
CT 次边 (A)	<u>.</u>			
1, 5	选择电流互感器二次电路的电流值,单位为安培。			
系统频率 (Hz)	·			
50、60	选择电力系统的频率,单位为赫兹。			
相序				

可以使用显示屏设置的基本设置参数 (持续)

数值	描述	
ABC、CBA	请选择3相系统的相序。	
A. 抑制 这是测量仪开始正常工作的最小电流。可将测量仪配置为不测量电路中感应的/辅助负载电流。		
5至99	选择阈值电流(抑制电流),单位为 mA。 注:默认抑制电流为 5 mA。	

使用显示屏配置高级设置参数

可以使用显示屏来配置高级参数的子集。

- 1. 导航到维护>设置。
- 2. 输入设置密码(默认为"0"),然后按确认。
- 3. 导航到表计 > 高级。
- 4. 移动光标指向您要修改的参数,然后按编辑。
- 5. 根据需要修改参数,然后按确定。
- 6. 移动光标指向您要修改的下一个参数,按编辑进行更改,然后按确定。
- 7. 按是保存更改。

可以使用显示屏设置的高级设置参数

参数	数值	描述
标签	_	此标签用于识别设备,例如"电力参数测量仪"。无法使用显示屏来编辑此参数。使用 ION Setup 可更改设备标签。
负荷计时器设定 (A)	0 - 18	指定计时器启动之前负载上的最小平均电流。计时器开始对负荷计时器处于"开"状态(即只要读数大于或等于此平均电流阈值时)的秒数进行计数。
峰值电流需量 (A)	0 - 18	指定用于包含到总需量失真 (TDD) 计算中的负载上的最小峰值电流需量。如果负荷电流低于最小峰值电流需量阈值,则测量仪不使用该读数来计算 TDD。如果希望电力参数测量仪使用已计量的峰值电流需量来进行此计算,请将此参数设置为"0"(零)。

设置速率

您可以利用速率设置屏幕设置不同的速率参数。

- 1. 导航至维护>设置。
- 2. 输入设置密码(默认为"0"),然后按确定。
- 3. 导航至速率。
- 4. 移动光标指向要修改的速率 1 或速率 2, 然后按编辑。
- 5. 移动光标指向要修改的通道或因数/(k_h),然后按编辑。
- 6. 根据需要修改参数,然后按确定。
- 7. 按向上箭头并按是保存更改。

8. 按向上箭头退出。

参数	数值	说明
标签	速率 1/速率 2	您可以使用 ION Setup 编辑标签。
	示例:二氧化碳 排放,电能成本	
通道	无、有有有入、 引功功功、 主流流动、 出、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	从列表中选择通道。
因数每 (kh)	0.000 至 99999.999	可以编辑的系数范围为 0.000 至 99999.999。

要使用 ION Setup 配置费率,请参见 ION Setup 在线帮助或 ION Setup"Device Configuration Guide"(可以到 www.se.com 下载)中的 "PM2000 series meter"主题。

设置区域设置

您可以更改区域设置以使用不同的语言本地化测量仪屏幕和显示数据,从而使用本地标准和惯例。

注:为了显示与语言设置参数中列出的不同语言,您必须需要使用固件升级过 程将相应的语言文件下载到测量仪中。

- 1. 导航至维护>设置。.
- 2. 输入设置密码(默认为"0"),然后按确定。
- 3. 导航至人机界面>区域。.
- 4. 移动光标指向您要修改的参数,然后按编辑。
- 5. 根据需要修改参数,然后按确定。
- 6. 移动光标指向您要修改的下一个参数,按编辑进行更改,然后按确定。
- 7. 按向上箭头退出。
- 8. 按是保存更改。

可以使用显示屏执行的区域设置

参数	数值	说明
语言	美国英语、法	选择您希望测量仪显示的语言。
	语、西班牙语、	
	德语、葡萄牙	
	语、中文、俄语	
日期格式	月/日/年、	设置您希望的日期显示方式,例如,月4日4年。
	年/月/日、	
	日/月/年	
时间格式	24 小时制、上	设置您希望的时间显示方式,例如,17:00:00 或
	午/下午	5:00:00 PM •
人机界面模式	IEC、IEEE	选择用于显示菜单名称或测量仪数据的标准惯例。

设置屏幕密码

建议修改默认密码,以防未经授权的人员访问有密码保护的屏幕,比如诊断和复位屏幕。

此项只能通过前面板进行配置。所有密码的出厂默认设置都是"0"(零)。

- 1. 导航至维护>设置。
- 2. 输入设置密码(默认为"0"),然后按确定。
- 3. 导航至人机界面>密码。
- 4. 移动光标指向您要修改的参数,然后按编辑。

参数	数值	说明
设置	0000 - 9999	设置用于访问测量仪设置屏幕的密码(维护>设置)。
电能复位	0000 - 9999	设置用于复位测量仪中累计的电能值的密码。
需量复位	0000 - 9999	设置用于复位测量仪中记录的峰值需量值的密码。
最大最小值复位	0000 - 9999	设置用于复位测量仪中记录的最大最小值的密码。

- 5. 根据需要修改参数,然后按确定。
- 6. 移动光标指向您要修改的下一个参数,按编辑进行更改,然后按确定。
- 7. 按向上箭头退出。
- 8. 按是保存更改。

丢失密码

若密码丢失或有其它测量仪技术问题,请访问 www.se.com 以获取 支持和帮助。 请务必在您的电子邮件中列出测量仪的型号、序列号和固件版本,或在呼叫技术支 持部门时准备好这些信息

设置时钟

利用时钟设置屏幕,您能够设置测量仪的日期和时间。

- 1. 导航至维护>设置。
- 2. 输入设置密码(默认为"0"),然后按确定。
- 3. 导航至时钟.
- 4. 移动光标指向您要修改的参数,然后按编辑。
- 5. 根据需要修改参数,然后按确定。
- 6. 按是保存更改。
- 7. 移动光标指向您要修改的下一个参数,按编辑进行更改,然后按确定。
- 8. 按向上箭头退出。

9. 按是保存更改。

参数	数值	说明
日期	日/月/年、 月/日/年、 年/月/日	使用屏幕上显示的格式来设置当前日期,其中 DD = 日, MM = 月, YY = 年。
时间	时:分:秒 (24小时 制)、时:分: 秒上午或下午	使用 24 小时格式设置当前的 UTC (GMT) 时间。
表计时间	格林尼治时间、 本地	选择 GMT 以显示当前的 UTC (格林尼治标准时区)时间。要显示本地时间,将此参数设置为"本地",然后使用"GMT 偏差(小时)"显示相应时区的本地时间。

要使用 ION Setup 配置时钟,请参见 ION Setup 在线帮助或 ION Setup 《Device Configuration Guide》(可以到 www.se.com 下载)中的"PM2000 series meter"主题。

快照

注: 仅适用于 PM2220/PM2230 型号测量仪

测量仪支持使用 HMI 通过快照记录瞬时值。在此页面可捕获平均电压 (Vavg)、平均电流 (lavg)、总功率 (Ptot) 和流出的电能 (E Del)。记录时间通过快照功能的时间 设置定义。它可以使用 HMI 或 ION Setup 配置。

查看快照页面

- 1. 导航到快照。
- 2. 按快照查看参数值。快照页面显示下列参数:
 - 平均电压 (Vavg)
 - 平均电流 (lavg)
 - 总功率 (Ptot)
 - 流出的电能 (E Del)
- 3. 按快照时查看格式为 HH:MM 的快照时间和日期。

快照设置

- 1. 导航到维护>设置。
- 2. 输入设置密码 (默认为"0"),然后按确定。
- 3. 导航到快照。
- 4. 按快照。此时将显示"快照"屏幕。
- 5. 按编辑选择快照时间,格式为HH:MM。
- 6. 按+从0至-9逐步增大活动数位。
- 7. 按 ◀ 输入所选字符并将向左移动到下一个字符位。
- 8. 继续操作直到所有值都已选择,然后按确定设定时间。
 - 按是接受更改并返回到前一个屏幕。
 - 按否保持现有配置并返回到前一个屏幕。

改型

注: 仅适用于 PM2220/PM2230 型号测量仪

测量仪改型为您提供了配置旧数据型号的选项,以便与较新的型号通讯。可以使用 HMI 配置改型寄存器映射选项。

改型设置

在测量仪中启用改型通讯模式需要下列设置。

- 1. 导航到维护 > 设置。
- 2. 输入设置密码(默认为"0"),然后按确定。
- 3. 按通讯。随即显示"串行端口"屏幕。
- 4. 按编辑选择累计参数。
- 5. 按-或+滚动到改型。
- 6. 按确定选择改型配置。
- 7. 按▲返回到"设置"屏幕。
 - 注:作出新的选择会导致现有的配置丢失,此时将会出现确认屏幕。
 - 按是接受更改并返回到"设置"屏幕。
 - 按否保持现有配置并返回到"设置"屏幕。

配置收藏页面

注: 仅适用于 PM2220/PM2230 型号测量仪

测量仪允许您选择4个参数,并将其按所需的顺序排列以显示在收藏页面中。只能 通过通讯并基于客户的需求选择这些参数。一些参数日志极其重要,而导航到这些 参数需要花费时间。为了便于导航和访问,测量仪允许您选择4个参数并锁定页面 以方便读取。

默认的收藏页面参数包括:

- Aavg
- PFavg
- Ptot
- E.Del
- 1. 启动 ION Setup 并连接至您的测量仪。
- 2. 打开 I/O Setup,并选择您希望配置的所需参数。
- 3. 配置参数并单击 OK。

下面是可以配置的相关参数列表:

- 平均电流 (lavg)
- 平均线电压 (Vavg)
- 平均相电压 (Vavg)
- 总有功功率 (Wtot)
- 总无功功率 (VARtot)
- 总视在功率 (VAtot)
- 平均功率因数 (PFavg)
- 频率 (F)
- 有功电能 流出 (Wh-Del)
- 无功电能 流出 (VARh-Del)
- 视在电能 流出 (VAh-Del)

自动复位配置

注: 仅适用于 PM2220/PM2230 型号测量仪

使用自动复位功能可在预先设定的日期和月份 (DD/MM) 复位电能和需量参数。可以配置 12 个月中每个月的复位日期。

在配置的日期和月份 (DD/MM) 对电能和最大需量执行自动复位后,电能参数 (VAh,Wh,VARh (Del,Rec,D-R,D+R))将被传输至旧的寄存器。电能和最 大需量将被复位为0。清除电能值后,也会自动清除最大需量值。

仅能通过通讯配置电能和最大需量参数的自动复位。

I/O 模块

仅适用于 PM2230 测量仪型号 仅适用于 测量仪型号

本节补充说明了可选 I/O 模块的安装工作表,并提供有关 I/O 模块的物理特征和功能的其它信息。

I/O 模块具有以下变型:

- 单通道模拟 I/O 模块
- 双通道模拟 I/O 模块
- 双通道数字 I/O 模块
- 双通道数字输入和继电器输出模块

模拟输入应用

模拟输入解释来自互感器的传入模拟电流信号。模拟 I/O 模块可使用标准 4-20 mA 模拟互感器测量电流。

对于模拟输入操作,测量仪接收模拟输入信号并提供处理后的缩放值。如果在输入端口上检测到开路,则模拟输入可能显示一个低于零的值。

您可以将模拟输入模式设置为电流传感。

模拟输入接线

双模拟输入接线

可以在测量仪上配置以下模拟输入:

代码	单位	描述
0	-	无单位
1	%	百分比
2	°C	摄氏度
3	°F	华氏度

代码	单位	描述	
4	Deg	角度	
5	Hz	赫兹	
6	A	安培	
7	kA	千安	
8	V	伏特	
9	kV	千伏	
10	MV	兆伏	
11	w	瓦特	
12	kW	千瓦	
13	MW	兆瓦	
14	VAR	无功伏安	
15	kVAR	无功千伏安	
16	MVAR	无功兆伏安	
17	VA	伏安	
18	kVA	千伏安	
19	MVA	兆伏安	
20	WH	瓦时	
21	kWH	千瓦时	
22	MWH	兆瓦时	
23	VARH	无功伏安小时	
24	kVARH	无功千伏安小时	
25	MVARH	无功兆伏安小时	
26	VAH	伏安小时	
27	kVAH	千伏安小时	
28	MVAH	兆伏安小时	
29	秒	秒	
30	分钟	分钟	
31	小时	小时	
32	字节 (RAM)	字节	
33	千字节 (RAM)	千字节	
34	\$	美元	
35	gal	加仑	
36	gal/hr	加仑/小时	
37	gal/min	加仑/分钟	
38	cfm	立方英尺/分钟	
39	PSI	PSI	
40	BTU	BTU	
41	L	升	
42	吨-小时	吨-小时	
43	l/hr	升/小时	
44	l/min	升/分钟	
45	€	欧元	

代码	单位	描述		
46	毫秒	毫秒		
47	m ³	立方米		
48	m ³ /sec	立方米/秒		
49	m³/min	立方米/分钟		
50	m³/hr	立方米/小时		
51	Pa	帕斯卡		
52	Bars	巴		
53	RPM	转/分钟		
55	BTU/hr	BTU/小时		
56	PSIG	磅/平方英寸表压		
57	SCFM	标准立方英尺/分钟		
58	MCF	千立方英尺		
59	热量	热量		
60	SCFH	标准立方英尺/小时		
61	PSIA	磅/平方英寸绝对压力		
62	lbs	磅		
63	kg	千克		
64	klbs	千磅		
65	lb/hr	磅/小时		
66	ton/hr	吨/小时		
67	kg/hr	千克/小时		
68	in. Hg	英寸汞柱		
69	kPa	千帕		
70	%RH	相对湿度百分比		
71	MPH	英里每小时		
72	m/sec	米/秒		
73	mV/cal/(cm²/min)	- 毫伏/卡/(平方厘米/分钟)		
74	in	 英寸		
75	mm	- 毫米		
76	GWH			
77	GVARH	无功千兆伏安小时		
78	GVAH	千兆伏安小时		
79	АН	安培小时		
80	kAH	千安小时		
81	Therm/hr	热量/小时		

模拟输出应用

模拟 I/O 模块可使用标准的 4 - 20 mA 模拟互感器发送低电流。

对于模拟输出操作,测量仪接收输入值并缩放至相应的信号值以发送至物理模拟输 出端口。

模拟输出接线

双模拟输出接线

可以在测量仪上配置以下模拟输出:

参数	描述
电流	电流:相
	平均电流
	不平衡电流:相
	最差不平衡电流
电压	线电压:相
	平均线电压
	相电压:相
	平均相电压
	不平衡线电压:相
	最差不平衡线电压
	不平衡相电压:相
	最差不平衡相电压
功率	有功功率:相
	总有功功率
	无功功率:相
	总无功功率
	视在功率:相
	总视在功率
PF	总功率因数
频率	频率

状态输入 (DI) 应用

状态输入通常用于监控外部触点或电路断路器和复费率应用的状态。

测量仪的状态输入需要使用外部电压源或湿性电压(在测量仪中提供)来探测状态 输入的"开/关"状态。如果状态输入端的外部电压在其工作范围之内,则测量仪会检 测到一个"开"状态。

使用 ION Setup 配置状态输入

状态输入端口(S1和S2)可使用 ION Setup 来进行配置。

- 1. 启动 ION Setup。
- 2. 连接到您的测量仪。
- 3. 导航到 I/O configuration > I/O Setup。
- 选择要配置的状态输入,然后单击 Edit。
 系统将显示该状态输入的设置屏幕。
- 5. 为该状态输入的 Label 输入一个描述性名称。
- 6. 根据需要对其它设置参数进行配置。
- 7. 单击 Send 保存更改。

通过 ION Setup 提供的状态输入设置参数

参数	数值	说明	
标签	—	使用此字段可更改默认标签以及为此状态输入指定描述 性名称。	
控制模式	正常、需量同步	 此字段显示了状态输入如何发挥功能。 Normal:该状态输入与其他测量仪功能没有关联。测量仪按正常的方式对输入脉冲的数量进行计数和记录。 Demand Sync:该状态输入与其中一个输入同步需量函数有关联。测量仪使用输入脉冲来将其需量周期与外部源进行同步。 	
去抖	0 至 9999	去抖是为机械接触抖动而补偿的时间延迟。使用此字段 可以设置外部信号必须保持某种状态多长时间(单位为 毫秒)才能被认为是发生了有效的状态更改。	
关联	—	如果状态输入已经与其他测量仪函数关联,则此字段显 示其他信息。	

数字输出应用

测量仪配备了 2 个数字输出端口 (D1 和 D2)。可以配置数字输出,以供以下应用 场合使用:

开关应用,例如用于为电容器组、发电机和其它外部设备及装置提供开/关控制信号。

电能脉冲应用,此时接收设备通过对来自测量仪数字输出端口的 kWh 脉冲进行计数,从而确定电能使用情况。

单元、数字和标准报警配置。

数字输出接线

默认数字输出状态

I/O 插脚的默认数字输出状态为高 (开关关闭)。可通过通讯更改 I/O 插脚的数字输出状态。

I/O 插脚状态	外部模式	警报	显示屏	通讯	开关
低	0	0	OFF	0	开
	0	1	ON	1	关
	0	0	OFF	0	开
	1	0	ON	1	关
高	0	0	OFF	0	关
	0	1	ON	1	开
	0	0	OFF	0	关
	1	0	ON	1	开

数字输出的需量参数

可根据超过设定的上限时的报警事件为数字输出配置相关的需量参数(当前需量 (VA,W,VAR)、上一需量(VA,W,VAR)和预测需量(VA,W, VAR))。在特定的时间内只能设置一个需量参数。

注: 使用 ION setup 通过通讯完成报警设置。

使用 ION Setup 配置数字输出

您可以使用 ION Setup 来配置数字输出。

- 1. 启动 ION Setup。
- 2. 连接到您的测量仪。

- 3. 导航到 I/O configuration > I/O Setup。
- 选择要配置的数字输出,然后单击编辑。
 系统将显示该数字输出的设置屏幕。
- 5. 在 Label 字段中为该数字输出输入一个描述性名称。
- 6. 根据需要对其它设置参数进行配置。
- 7. 单击 Send 保存更改。

可以使用 ION Setup 设置的数字输出设置参数

参数	数值	描述
Label	_	使用此字段可更改默认标签以及为此数字输出指定描 述性名称。
控制模式	外部、报警、电能	 此字段显示了数字输出如何发挥功能。 外部:该数字输出可通过软件或通过通讯发送的命令由 PLC来进行远程控制。 报警:该数字输入与报警系统关联。测量仪在报警被触发时向数字输出端口发送一个脉冲。 电能:该数字输出与电能脉冲相关联。选中此模式后,您可以选择电能参数,然后设置脉冲率(脉冲数/kW)。
操作模式	正常、定时、绕组	 正常:当控制模式设置为 External 或 Alarm 时应用此模式。在触发外部模式的情况下,该数字输出保持为"开"状态,直到计算机或 PLC 发送 "关"命令。在触发报警模式的情况下,数字输出保持为"开"状态,直到跨过退出点。 定时:该数字输出在由"上电时间"设置寄存器定义的时间段内始终保持为"开"。 绕组:当控制模式设置为 External 或 Alarm 时应用此模式。对于与数字输出关联的单元报警,您必须将操作模式设置为绕组。该输出在收到 "激励"命令时打开,在收到"绕组释放"命令时关闭。在控制电源断开的情况下,该输出记忆并返回到控制电源断开时所处的状态。
上电时间 (秒)	0至9999	此设置定义了脉冲宽度(ON time),单位为秒。 注:在电能模式,数字输出脉冲"开"的时间被固定 为 20 毫秒。
选择报警	所有可用的报警	当控制模式设置为报警时应用。选择一个或多个要监控的报警。
关联	_	如果数字输出已经与其它测量仪功能关联,此字段则 显示其它信息。

继电器输出应用

继电器输出可以配置为用于开关应用,例如用于为电容器组、发电机和外部设备及装置提供开/关控制信号。

使用 ION Setup 配置继电器输出

您可使用 ION Setup 来配置继电器输出端口(继电器 1 和继电器 2)。

- 1. 启动 ION Setup。
- 2. 连接到您的测量仪。
- 3. 导航到 I/O configuration > I/O Setup。
- 选择要配置的继电器输出,然后单击 Edit。
 系统将显示该继电器输出的设置屏幕。
- 5. 为该继电器输出的 Label 输入一个描述性名称。
- 6. 根据需要对其它设置参数进行配置。

7. 单击 Send 保存更改。

通过 ION Setup 提供的继电器输出设置参数

参数	数值	说明	
标签	-	使用此字段可更改默认标签以及为此继电器输出指定 描述性名称。	
控制模式	外部、报警	 此字段显示了继电器输出如何发挥功能。 外部:继电器输出可通过软件或通过通讯发送的命令由 PLC来进行远程控制。 报警:继电器输出与报警系统关联。测量仪在报警被触发时向继电器输出端口发送一个脉冲。 	
操作模式	正常、定时、绕组	 正常:当控制模式设置为 External 或 Alarm 时应用此模式。在触发外部模式的情况下,继电器输出保持为关闭状态,直到计算机或 PLC 发送打开命令。在触发报警模式的情况下,继电器输出保持为关闭状态,直到跨过恢复点。 定时:继电器输出在由"上电时间"设置寄存器定义的时间段内始终保持为"开"。 绕组:当控制模式设置为 External 或 Alarm 时应用此模式。对于与继电器输出关联的单元报警,您必须将操作模式设置为绕组。该输出在收到"激励"命令时打开,在收到"绕组释放"命令时关闭。在控制电源断开时情况下,该输出记忆并返回到控制电源断开时所处的状态。 	
上电时间(秒)	0 至 9999	此设置定义了脉冲宽度(ON time),单位为秒。	
选择报警	所有可用的报警	当控制模式设置为报警时应用。选择一个或多个要监 控的报警。	
关联	-	如果继电器输出已经与其他测量仪功能关联,此字段 则显示其他信息。	

IO LED 指示灯

IO LED 指示灯提醒或通知您测量仪的 IO 活动。当 IO 模块连接到测量仪时, LED 以稳定的速度闪烁。

报警

报警

报警概述

报警是测量仪在检测到报警条件时通知您的方式,比如超出正常工作条件的错误或事件。

报警一般由设置点驱动并可以编程以监测您电气系统中特定的行为、事件或意外状况。

您可以将测量仪配置为,当测量仪的测量值或工作状态中探测到预定义事件时生成 并显示高、中和低优先级报警。测量仪还可以记录报警事件信息。

测量仪出厂时已启用了一些报警。在测量仪可生成报警之前,还需配置其他报警。

按需自定义测量仪报警,如更改优先事项。您还可以使用测量仪的高级功能创建自 定义报警。

报警类型

测量仪支持很多不同的报警类型。

类型	数量
单元	4
数字	2
标准	23

单元报警

单元报警是一种最简单的报警,可监控单一行为、事件或条件。

可用单元报警

测量仪设有一组4个单元报警。

报警标签	说明	
表计上电	测量仪在控制电源断开后通电。	
表计复位	测量仪出于任何原因复位。	
表计诊断	测量仪的自我诊断功能检测到问题。	
反相	测量仪检测到与预期不同的相序。	

数字报警

数字报警监控测量仪数字/状态输入的"开"或"关"状态。

含设定值延时的数字报警

为防止不稳定的信号导致错误触发,您可以为数字报警设置触发延时和恢复延时。

А	触发设定值(1=开)	ΔΤ2	恢复延时(秒)
В	恢复设定值(0=关)	EV2	报警条件结束
ΔT1	触发延时(秒)	ΔΤ3	报警持续时间(秒)
EV1	报警条件开始		

注:为防止使用误操作的报警触发事件填充报警日志,当数字输入/状态在1秒 内更改状态超过4次或在10秒内更改超过10次时,系统将自动禁用数字报 警。在这种情况下,您必须使用显示屏或ION Setup 重新启用报警。

可用数字报警

测量仪设有一组2个数字报警。

报警标签	说明
数字报警 S1	数字输入1
数字报警 S2	数字输入2

标准报警

标准报警是设定值驱动的报警,可以监控电力系统中的特定行为、事件或意外状况。

标准报警的检测率等于 50/60 测量仪周期,如果测量仪的频率设置配置为与系统频率 (50 或 60 Hz)相匹配,则额定为 1 秒。

许多标准报警都是三相报警。三相中每相的报警设定值会分别予以评估,但将报警 报告为单个报警。如果第一相超过报警触发幅值的时间达到触发延时,就会触发报 警。只要任何相保持为报警状态,报警就是激活的。当最后一相低于恢复幅值的时 间达到恢复延时的时候,就会发生报警恢复。

超出和低于设定值(标准)报警操作的示例

测量仪支持关于标准报警的超出和低于设定值条件。

当受监控信号的幅值超过触发设定值设置所指定的限值,且处于该状态的时间达到 触发延时设置所指定的最短时间时,即符合设定值条件。

当受监控信号的幅值超出恢复设定值设置所指定的限值,且处于该状态的时间达到恢复延时设置所指定的最短时间时,设定值条件便会结束。

超出设定值

当值超出触发设定值设置、且保持足够长的时间并达到触发时间延时周期(ΔT1)时,报警条件设置为"开"。当值低于回动设定值设置、且保持足够长的时间并达到回动时间延时周期(ΔT2)时,报警条件设置为"关"。

NHA2778903-06

40

测量仪将记录报警事件开始(EV1)和结束(EV2)的日期与时间。此外,测量仪 还将执行分配给事件的任何任务,例如操作数字输出。测量仪也将记录报警周期 之前、之中或之后的最大值(Max1、Max2)。

低于设定值

当值下降并低于触发设定值设置、且保持足够长的时间并达到触发时间延时周期 (Δ T1)时,报警条件设置为"开"。当值上升并高于回动设定值设置、且保持足够 长的时间并达到回动时间延时周期(Δ T2)时,报警条件设置为"关"。

А	触发设定值
В	回动设定值
ΔΤ1	触发延时周期(秒)
EV1	报警开始条件
ΔΤ2	回动延时周期(秒)
EV2	报警结束条件
ΔΤ3	报警持续时间(秒)
Min1	触发周期期间记录的最小值
Min2	报警周期期间记录的最小值

测量仪将记录报警事件开始(EV1)和结束(EV2)的日期与时间。此外,测量仪 还将执行分配给事件的任何任务,例如操作数字输出。测量仪也将记录报警周期 之前、之中或之后的最小值(Min1、Min2)。

允许的最大设定值

测量仪已经过编程设定,有助于防止用户数据出现输入错误,并设置了标准报警的限值。

您可以为某些标准报警输入的最大设定值取决于出厂时编程设定的电压互感器变比 (VT变比)、电流互感器变比(CT变比)、系统类型(如相数)和/或最大电压 限值和最大电流限值。

注: VT 变比是指 VT 一次电路除以 VT 二次电路, CT 变比是指 CT 一次电路除 以 CT 二次电路。

标准报警	最大设定值
Over Phase Current	(最大电流)x(CT 变比)
Under Phase Current	(最大电流)x(CT变比)
Under Voltage L-L	(最大电压)x(VT 变比)
Over Voltage L-N	(最大电压)x(VT 变比)

标准报警	最大设定值
Under Voltage L-N	(最大电压)x(VT 变比)
Over Active Power	(最大电压)x(最大电流)x(相数)
Over Reactive Power	(最大电压)x(最大电流)x(相数)
Over Apparent Power	(最大电压)x(最大电流)x(相数)
Over Present Active Power Demand	(最大电压)x(最大电流)x(相数)
Over Last Active Power Demand	(最大电压)x(最大电流)x(相数)
Over Predicted Active Power Demand	(最大电压)x(最大电流)x(相数)
Over Present Reactive Power Demand	(最大电压)x(最大电流)x(相数)
Over Last Reactive Power Demand	(最大电压)x(最大电流)x(相数)
Over Predicted Reactive Power Demand	(最大电压)x(最大电流)x(相数)
Over Present Apparent Power Demand	(最大电压)x(最大电流)x(相数)
Over Last Apparent Power Demand	(最大电压)x(最大电流)x(相数)
Over Predicted Apparent Power Demand	(最大电压)x(最大电流)x(相数)

可用标准报警

测量仪设有一组标准报警。

注:有些报警不适用于所有电力系统配置。例如,无法在3相三角形系统中启用相电压报警。某些报警使用系统类型和电压互感器变比或电流互感器变比来确定允许的最大设定值。

报警标签		有效范围和分辨率		举合
ION Setup	显示屏	ION Setup	显示屏	- 平型
Over Phase Current	过流,相位	0.000 至 99999.000	0至99999	А
Under Phase Current	欠流,相位	0.000 至 99999.000	0至99999	А
Over Voltage L-L	线电压过压	0.00 至 999999.00	0至999999	V
Under Voltage L-L	线电压欠压	0.00 至 999999.00	0至9999999	V
Over Voltage L-N	相电压过压	0.00 至 999999.00	0至9999999	V
相电压欠压	相电压欠压	0.00 至 999999.00	0至9999999	V
Over Active Power	过功率 kW	0.0 至 9999999.0	0至9999999	kW
Over Reactive Power	过功率 kVAR	0.0 至 9999999.0	0至9999999	kvar
Over Apparent Power	过功率 kVA	0.0 至 9999999.0	0至9999999	kVA
Leading True PF	超前 PF,真	-1.00 至 -0.01 和 0.01 至 1.00		—
Lagging True PF	滞后 PF,真	-1.00 至 -0.01 和 0.01 至 1.00		—
Over Frequency	过频率	0.000至 99.000 H		Hz
Under Frequency	低频率	0.000 至 99.000		Hz
过电压 THD	过电压 THD	0.000 至 99		%
Over Present Active Power Demand	当前过功率需量	0.0 至 9999999.0	0 至 9999999	kW
Over Last Active Power Demand	上次过功率需量	0.0 至 9999999.0	0至9999999	kW
Over Predicted Active Power Demand	预测过功率需量	0.0 至 9999999.0	0至9999999	kW
Over Present Reactive Power Demand	当前过功率 kVAR 需量	0.0 至 9999999.0	0至9999999	kVAR
Over Last Reactive Power Demand	上次过功率 kVAR 需量	0.0 至 9999999.0	0至9999999	kVAR

报警标签		有效范围和分辨率		举任
ION Setup	显示屏	ION Setup	显示屏	甲世
Over Predicted Reactive Power Demand	预测过功率 kVAR 需量	0.0 至 9999999.0	0 至 9999999	kvar
Over Present Apparent Power Demand	当前过功率 kVA 需量	0.0 至 9999999.0	0至9999999	kVA
Over Last Apparent Power Demand	上次过功率 kVA 需量	0.0 至 9999999.0	0至9999999	kVA
Over Predicted Apparent Power Demand	预测过功率 kVA 需量	0.0 至 9999999.0	0至9999999	kVA

功率因数 (PF) 报警

您可以设置"超前 PF"或"滞后 PF"报警,以监控电路的功率因数何时超出或低于您 指定的阈值。

"超前 PF"或"滞后 PF"报警使用功率因数的四个象限作为 y 轴上的值,其中象限 Ⅱ 作为标度的最低值,接下来是象限 Ⅲ 和象限 I,最后一个是象限 Ⅳ (是标度的最高值)。

象限	PF 值	超前/滞后
П	0至-1	超前(电容)
111	-1至0	滞后(电感)
1	0至1	滞后(电感)
IV	1至0	超前(电容)

超前 PF 报警

"超前 PF"报警监控超出设定值的条件。

А	触发设定值	ΔΤ2	恢复延时(秒)
В	恢复设定值	EV2	报警条件结束
ΔT1	触发延时周期(秒)	ΔΤ3	报警持续时间(秒)
EV1	报警条件开始		

滞后 PF 报警

"滞后 PF"报警监控低于设定值的条件。

报警优先级

每个报警均有优先级,可以用于区分需要立即处理的事件和无需处理的事件。

报警优先级	报警显示通知和记录方法			
	报警指示灯	报警图标	报警详细信息	报警记录
高	当报警激活时闪烁。	当报警激活时闪烁。报警 图标将始终显示,直到确 认为止。	单击详情,将显示导致报 警触发或恢复的原因。单 击确定,可确定报警。	记录在报警日志中。
中	当报警激活时闪烁。	当报警激活时闪烁。	单击详情,将显示导致报 警触发或恢复的原因。	记录在报警日志中。
低	当报警激活时闪烁。	当报警激活时闪烁。	单击详情,将显示导致报 警触发或恢复的原因。	记录在报警日志中。
无	无变化	无	无	仅记录在事件日志中。

注:只有当报警/电能脉冲指示灯配置为用于报警时才会出现报警指示灯通知。

多个报警的注意事项

如果不同优先级的多个报警同时激活,则显示屏将按出现顺序显示这些报警。

报警设置概述

您可以使用 ION Setup 来配置单元报警、数字报警或标准(1秒)报警。

如果您对测量仪的基本设置进行了更改,则所有报警都将被禁用以防触发不必要的 报警操作。

注意
不符合设计意图的设备操作
• 验证所有报警设置是否正确,必要时进行调整。
• 重新启用所有己配置的报警。
若不遵循这些说明,可能会导致报警功能无法正常工作。

内置的错误检查

•

ION Setup将自动检查不正确的设置组合。启用报警时,您必须先将触发和恢复限 值设置为可接受的值,然后才能退出设置屏幕。

使用 ION Setup 设置报警

您可以使用 ION Setup 来创建和设置报警。

- 1. 启动 ION Setup 并连接至您的测量仪。
- 2. 打开Alarming屏幕。
- 3. 选择要配置的报警, 然后单击Edit。
- 按照不同的报警设置部分中的说明,配置设置参数。
 有关更多信息,请参阅ION Setup "Device Configuration Guide"。

单元报警设置参数

根据需要对单元报警设置参数进行配置。

ION Setup 控件如括号中所示。

设置	选项或范围	说明
启动	是(选中)或否(清除)	此设置将启用或禁用报警。
优先级	高、中、低、无	此选项设置报警的优先级和通知选项。
选择数字输出(输出)	无	选择触发报警时要控制的数字输出。
	数字输出 D1	
	数字输出 D2	
	数字输出 D1 & D2	
操作	正常	选择所需的操作模式
	定时	注:当选择正常值时,不会触发数字输 出。
	绕组	

数字报警设置参数

根据需要对数字报警设置参数进行配置。

ION Setup 控件如括号中所示。

设置	选项或范围	说明
启动	是(选中)或否(清除)	此设置将启用或禁用报警。
优先级	高、中、低、无	此选项设置报警的优先级和通知选项。
触发设定值(设定值触发)	开、关	使用此设置可根据数字输入的状态("开"或 "关")控制何时触发报警。
触发延时(延时)	0至999999	此设置指定触发报警之前,数字输入必须处 于报警触发状态的秒数。
恢复延时(设定值恢复延时)	0至999999	此设置指定报警关闭之前,数字输入必须超 出报警触发状态的秒数。
选择数字输出(输出)	无	选择触发报警时要控制的数字输出。
	数字输出 D1	
	数字输出 D2	
	数字输出 D1 & D2	

标准(1秒)报警设置参数

根据需要对标准报警设置参数进行配置。

ION Setup 控件如括号中所示。

报警

设置	选项或范围	描述
Enable	是(选中)或否(清除)	此设置将启用或禁用报警。
优先级	高、中、低、无	此选项设置报警的优先级和通知选项。
触发设定值 mA (触发限值)	根据正在设置的标准报警而有所不同	这是您定义为触发报警的设定值限值的值 (幅值)。对于"超出"条件,这意味着该值 已超出触发限值。对于"低于"的条件,这意 味着该值已低于触发限值。
触发延时(延时)	0 至 999999	此设置指定在触发报警之前,信号必须始终 超过(对于"超出"条件)或低于(对于"低于" 条件)触发设定值的秒数。
恢复设定值 mA (恢复限值)	根据正在设置的标准报警而有所不同	这是您定义为恢复报警条件的限值的值(幅 值)。对于"超出"条件,这意味着该值已低 于恢复限值。对于"低于"条件,这意味着该 值已超过触发限值。
恢复延时(延时)	0至999999	此项设置指定在报警条件结束之前,信号必 须始终低于(对于"超出"条件)或超过(对 于"低于"条件)恢复设定值的秒数。
触发设定点提前/滞后(提前、滞后)	"超前"或"滞后"	仅适用于 PF (功率因数)报警。使用此项 可设置 PF 值和象限,以便为超出(PF 超 前)或低于(PF 滞后)PF 条件设置触发设 定值。
恢复设定点提前/滞后(提前、滞后)	"超前"或"滞后"	仅适用于 PF (功率因数)报警。使用此项 可设置 PF 值和象限,为超出(PF 超前)或 低于(PF 滞后)PF 条件设置恢复设定值。
选择数字输出(输出)	无	选择触发报警时要控制的数字输出。
	数字输出 D1	
	数字输出 D2	
	数字输出 D1 & D2	

指示灯报警指示器

您可以将测量仪的报警/电能脉冲指示灯作为报警指示器。 当设置为检测报警时,该指示灯闪烁则表示存在报警状况。

使用显示屏配置报警指示灯

您可以使用测量仪显示屏来为报警配置报警/电能脉冲指示灯。

- 1. 导航至维护>设置> LED。
- 2. 将模式设置为报警,然后按确定。
- 3. 按向上箭头退出。按是保存更改。

使用 ION Setup 配置报警指示灯

您可以使用 ION Setup 来为报警配置测量仪指示灯。

- 1. 打开 ION Setup 并连接至您的测量仪。有关说明,请参见 ION Setup 帮助。
- 2. 导航至Energy Pulsing。
- 3. 选择Front Panel LED, 然后单击Edit。
- 4. 将控制模式设置为Alarm并单击OK。
- 5. 单击Send保存更改。

报警显示和通知

测量仪会在检测到报警条件时向您发送通知。

报警图标

当触发低、中或高优先级报警时,以下符号将显示在显示屏幕的右上角,表示报警 已激活:

 $\underline{\wedge}$

对于高优先级报警,报警图标始终会显示,直到您确认报警为止。

报警/电能脉冲指示灯

如果已配置用于报警,则报警/电能脉冲指示灯也会闪烁,表示测量仪检测到报警条件。

报警屏幕

如果您的测量仪配备显示屏,您可以使用按钮导航到报警设置或显示屏幕。

激活的报警

触发事件发生时,激活的报警列表将显示在测量仪显示屏的"激活报警"屏幕中。有关事件的更多信息,请按详细信息。

报警详细信息

有关报警的详情,可查看:

 测量仪显示屏上的激活报警(Active)、报警历史(Hist)、报警计数器 (Count)和未确认的报警(Unack)屏幕,或

激活的报警列表和报警历史记录

每次出现的低、中或高优先级报警均会存储在激活的报警列表中,并记录在报警历史记录中。

激活报警列表一次可包含 40 个条目。该列表以循环缓冲器的形式工作,当进入激活的报警列表的条目超过 40 个时,新条目将取代旧条目。激活的报警列表中的信息不是永久性的,当测量仪复位时将重新初始化。

报警历史记录包含 40 个条目。该记录也以循环缓冲器的形式工作,新进来的条目 将取代旧条目。报警历史记录中的信息是永久性的,当测量仪复位时将予以保留。

使用显示屏来查看激活报警的详情

当报警条件成立(报警=开)时,报警将显示在激活的报警屏幕中。

无论优先级如何,这些报警均按出现顺序显示。报警详细信息将显示报警事件的日期和时间、事件类型(例如触发或单元)、检测到报警条件所在的相以及导致发生 报警条件的值。

注:如果报警优先级设置为"无",则不会提供报警详细信息。

此外,报警详细信息(对于低、中和高优先级报警)也会记录在报警历史记录中。

- 1. 导航至报警>激活。
- 2. 选择要查看的报警 (最新报警显示在顶部)。

3. 按详情。

注:对于未确认的高优先级报警,此屏幕中将显示"确认"选项。按确认可确 认报警。如果您不想确认报警,请返回到上一屏幕。

使用显示屏来查看报警历史的详情

报警历史记录将保留激活的报警和过去报警的记录。

当激活的报警条件不成立(报警=关)时,事件将记录在报警历史记录中,且报警 通知(报警图标、报警指示灯)将关闭。

无论优先级如何,这些报警均按出现顺序显示。报警详细信息显示报警事件的日期 和时间、事件类型(例如恢复或单元)、检测到报警条件所在的相以及导致报警条 件开或关的值。

注:如果报警优先级设置为"无",则不会提供报警详细信息。

- 1. 导航至报警>历史。
- 2. 选择要查看的报警(最新报警显示在顶部)。
- 3. 按详情。

注:对于未确定的高优先级报警,此屏幕中将显示确认选项。按确认可确 认报警。如果您不想确认报警,请返回到上一屏幕。

报警计数器

测量仪将对每次出现的每种报警进行计数和记录。

报警滚动值

达到值 9999 之后,报警计数器将翻滚回 0。

使用 ION Setup 复位报警

使用 ION Setup 复位报警。

您也可以使用测量仪显示屏来复位报警。

- 1. 在 ION Setup 中连接到您的测量仪。
- 2. 打开Meter Resets屏幕。
- 3. 选择要清除的报警参数并单击Reset。

测量仪记录

查看概述

本章简要介绍测量仪的下述日志:

- 报警日志
- 用户定义的数据日志

日志是指储存在测量仪的永久性存储器中的文件,也称为"本体日志"。

设置数据日志

您可选择在数据日志中记录 2 个项目,并可选择这些值的更新频率(记录间隔)。 使用 ION Setup 可配置数据记录。

注意

数据丢失

在配置前,请保存数据日志的内容。

若不遵循这些说明,可能会导致数据丢失。

- 启动 ION Setup 并在设置屏幕模式下(View > Setup Screens)打开测量 仪。有关说明,请参见 ION Setup 帮助。
- 2. 双击 Data Log #1。
- 3. 设置记录频率和要记录的测量值/数据。
- 4. 单击 Send 将更改保存至测量仪。

参数	数值	说明
Status	启用、禁用	设置此参数以启用或禁用测 量仪中的数据记录功能。
间隔	15 分钟、30 分钟、60 分钟	选择设置记录频率的时间 值。
Channels	根据测量仪类型的不同,可 记录的项目会有所不同。	从"Available"列中选择要记录 的项,然后单击双向右箭头 按钮,将该项目移动到 "Selected"列。 要删除某个项目,请从
		"Selected"列中选择此项目, 然后单击双向左箭头按钮。

使用 ION Setup 保存数据日志内容

您可使用 ION Setup 来保存数据日志的内容。

- 启动 ION Setup,并在数据屏幕模式(View > Data Screens)中打开测量 仪。有关说明,请参见 ION Setup 帮助。
- 2. 双击 Data Log #1 以检索记录。
- 3. 记录上传完成之后,右键单击查看器中的任意位置,并从弹出菜单中选择 Export CSV,以导出整个日志。

注:要仅导出日志中的选定记录,请单击要导出的第一条记录,按 Shift 键并单击要导出的最后一第记录,然后从弹出菜单中选择 **Export CSV**。

4. 导航至要保存数据日志文件的文件夹,然后单击 Save。

报警日志

报警记录存储在测量仪的报警历史记录中。

测量仪默认可以记录发生的任意报警条件。每次出现报警时,就会进入报警日志。测量仪中的报警日志储存报警的触发点和恢复点,以及与这些报警相关的日期和时间。您可以查看报警日志或将其存储到磁盘上,并复位警报日志以从测量仪内存中 清除数据。

测量仪将警报日志数据存储在永久性存储器中。报警日志长度固定为40个记录。

测量和计算

测量仪初始化

测量仪初始化是一个特殊命令,可以清除测量仪的电能、功率、需量值和测量仪操作计时器。

完成测量仪配置后,通常需要初始化测量仪,然后才能将它添加到电能管理系统 中。

配置好所有测量仪设置参数后,在导航到各个测量仪显示屏屏幕,并确认显示的数据有效后执行测量仪初始化。

注:可以使用 ION Setup 和安全命令接口执行测量仪初始化。

实时读数

测量仪可测量电流和电压,并实时报告所有3相及零线的RMS(均方根)值。

电压和电流输入量以每个周期 64 个样本的采样率进行持续监控。此解算量有助于测量仪能够为各种商业、建筑和工业等应用提供可靠的测量值和计算电气值。

能源计量

该测量仪可提供完全双向的4象限电能测量功能。

该测量仪将所有累计的有功、无功和视在能源计量存储在永久性存储器中:

- kWh、kVARh、kVAh(流出和流入值)
- kWh、kVARh、kVAh 净值(流出 流入)
- kWh、kVARh、kVAh 绝对值(流出+流入)

所有电能参数均表示所有3相的总和。

注:根据所选的电能范围,当任何电能参数在 999.99 溢出时,所有电能参数值将 被复位。

基于象限的 VARh

注: 仅适用于 PM2220/PM2230 型号测量仪

基于象限的无功功率值仅在通讯上可用。这些值在测量仪显示屏上不可用。这些无 功电能相对于 Q1、Q2、Q3 和 Q4 象限。

在通讯上基于象限的无功电能记录如下:

- Q1(00至90度)=Q1 VARh,流出
- Q2(90 至 180 度) = Q2 VARh,流出
- Q3(180 至 270 度) = Q3 VARh,流入
- Q4(270 至 360 度) = Q4 VARh,流入

清除电能值时将清除所有基于象限的 VARh 值。

最小/最大值

当读数达到其最低或最高值时,测量仪更新并将这些最小/最大值保存在永久性存储器中。

50 Hz 系统的测量仪实时读数每50 个周期更新一次,而60 Hz 系统的测量仪实时 读数每60 个周期更新一次。

功率需量

功率需量是固定时段内平均功耗的度量。 注:如未指定,则提及需量时假定为平均功率需量。

测量仪可以测量瞬时功耗并能够使用各种方法来计算需量。

功率需量计算方法

使用指定时段内累计的电能除以该时段的长度即可计算得出功率需量。

测量仪如何执行此计算取决于您选择的方法和时间参数(例如,带有 15 分钟间隔和 5 分钟次间隔的定时滚动区块需量)。

为了与公共电力部门计费兼容,测量仪提供了下列类型的功率需量计算方法:

- 区块间隔需量
- 同步需量
- 热需量

您可以从显示屏或软件中来配置功率需量计算方法。

区块间隔需量

对于区块间隔需量方法类型,需要指定测量仪用于需量计算的一段时间间隔(或区块)。

选择/配置测量仪如何处理该间隔,有下列方法可供选择:

类型	说明
定时滑动区块	选择从 1 到 60 分钟的一个间隔 (增量为 1 分钟)。如果间隔介于 1 至 15 分钟之间,则需量计算每 15 秒更新一次。如果间隔介于 16 至 60 分钟之间,则需量计算每 60 秒更新一次。测量仪显示最后一个完 成间隔的需量值。
定时区块	选择从1到60分钟的一个间隔(增量为1分钟)。测量仪在各个间隔结束时计算并更新需量。
定时滚动区块	选择间隔和次间隔。次间隔必须是间隔的均分值(例如,15分钟间隔 分为3个5分钟的次间隔)。需量在每个次间隔结束时更新。测量仪 显示最后一个完成间隔的需量值。

区块间隔需量示例

下列示图显示了使用区块间隔方法计算功率需量的各种方式。在本示例中,间隔设置为 15 分钟。

定时滑动区块

时间 (分钟)

定时区块

20

15

25

35

30

同步需量

您可以使用外部脉冲输入、通过通讯发送的命令或设备内部的实时时钟来将需量计算配置成同步进行。

40

45

类型	说明
命令同步需量	此方法允许您同步通讯网络上的多个测量仪的需量间隔。例如,如果可编 程逻辑控制器 (PLC) 输入正在监控公共事业部门电力收费测量仪上需量间 隔结束时的脉冲,则您可以对 PLC 进行编程,使电力收费测量仪只要开始 新的需量间隔,PLC 就会向多个测量仪发出命令。每次发出命令时,各个 测量仪的需量读数都对同一间隔进行计算。
时钟同步需量	此方法允许您将需量间隔同步到测量仪的内部实时时钟。这样有助于您将 需量同步到某个特定时间,通常是在整点上(例如,上午12:00点)。如 果您选择其它日期时间对需量间隔进行同步,则必须指定以分钟为单位从 凌晨算起的时间。例如,要在上午8:00进行同步,则选择480分钟。

注:对于这些需量类型,您可以选择区块或滚动区块选项。如果选择滚动区块 需量选项,则需要指定次间隔。

热需量

热需量是基于热量反应来计算需量,它模拟的是热需量测量仪的功能。

该需量计算在每个间隔结束时更新。您可将该需量间隔设置为1到60分钟(增量为1分钟)。

热需量示例

下列图示说明了热量需量计算。在本示例中,间隔设置为15分钟。该间隔是时间 轴上移动的一段时间范围。计算在每个间隔结束时更新。

电流需量

测量仪使用区块间隔、同步或热需量法来计算电流需量。 您可将该需量间隔设置为1到60分钟,增量为1分钟(例如,15分钟)。

预测需量

测量仪在 kW、kVAR 和 kVA 需量的当前间隔结束时计算预测需量,这种预测考虑 了当前(部分)间隔范围内到目前为止的电能消耗和当前的消耗速率。

预测需量会按照测量仪的更新率更新。

下列图示显示负载的变更如何影响该间隔的预测需量。在本示例中,间隔设置为 15 分钟。

峰值需量

测量仪记录 kWD、kVARD 和 kVAD 功率(或峰值需量)的峰值(或最大值)。

各个值的峰值是测量仪自上次复位以来的最高平均读数。这些数值记录在测量仪的 永久性存储器中。

测量仪还存储出现峰值需量时的日期和时间。

计时器

测量仪支持有功负荷计时器、测量仪操作计时器和运行小时数。

有功负荷计时器

有功负荷计时器根据您为负荷计时器的设定值设置所指定的最小电流,显示负荷已 运行多长时间。

测量仪操作计时器

测量仪操作计时器显示测量仪已通电的时间。

运行时间

运行时间根据流出和流入累计电能值显示负荷已经运行的时间。 仅通过通信进行配置。

复费率

注: 仅适用于 **PM2230** 测量仪型号 复费率功能允许您为存储电能值设置不同的费率。 不同费率的电能值存储在与每个费率对应的寄存器中。

复费率示例

当公共事业部门基于电能消费的日期或日期时间制定了不同收费水平的费率时间表时,可以使用复费率功能。

在上述图示中,功率曲线下方的面积等于消耗的电能。

通常,公共事业部门制定费率时间表是为了让电能成本在高需求或高能耗时段费用 更高。如何配置这些"费率电能容器"决定了这些容器的填充速度,这与电能成本的 增加相互关联。每 kWh 电能的价格在费率 T1 时最低,在费率 T2 时最高。

复费率实施

该测量仪配置最多支持4种不同的费率,从而能够测量和监控可用于计费或成本应用的电能使用情况。

您可以使用三种不同的费率模式激活复费率寄存器:

- 命令模式
- 日期时间模式
- 输入模式

命令模式概述

您可以使用命令模式来向设定有功费率的设备发送 Modbus 命令。

在您发送设定其它费率的另一个 Modbus 命令之前,有功费率适用于所测量的电能。

在 www.se.com 中搜索测量仪 Modbus 寄存器列表以下载 Modbus 映射。

日期时间模式概述

您可以使用日期时间模式来创建费率时间表,该时间表可指定测量仪在何处存储电 能或输入已测量的数据,基于年份时间(月、日)、日期类型(每日、周末、工 作日或特定的星期几)或日期时间。

从各种费率中收集的数据则可用于电能审计或类似的成本和预算计划等目的。

日期时间模式费率有效性

有效的日期时间费率具有某些条件和限制:

- 每个费率都必须涵盖一个独有的时间段(费率不能重叠),但某些时间段可以 没有任何费率。
- 可以应用任意数量的费率,从无到费率的最大数量。
- 日期时间费率不因夏令时而调整。
- 日期时间费率包括闰年的2月29日(不过,建议不要将2月29日作为开始 或结束日期,否则该费率在非闰年将会无效)。
- 除了闰年,费率日期不会特定于年份;如果您要建立一个在8月第一个星期一 开始的费率,则需要输入该年份的日期,然后手动更新后续年份的费率信息。

在您输入费率信息时,您的设备会执行验证检查;如果费率配置无效,它会提示您 更改所输入的信息或将该费率设置为禁用。这些检查包括:

- 开始和结束时间必须不一样(例如,创建的费率不能开始和结束都在 02:00时)。
- 对于每日应用的费率,只要其起始时间早于结束时间即可。建立的每日费率可以开始于 06:00 而结束于 02:00,但这样的时间仅对每日费率有效,对其它费率类型无效。
- 如果起始日和结束日在同一个月,则起始日必须早于结束日。建立的费率不能 开始于6月15日而结束于6月12日。

日期时间费率创建方法

您可以使用两种方法之一或这些方法的组合来创建日期时间费率:

- 年份时间费率将该年划分成多个时段(通常是季节),其中每个时段都有一个 或多个日期类型。例如,一个利用了此方法的四段费率配置可以有夏季和冬 季,季节中又可以使用不同的周末和工作日费率。
- 每日费率可以按星期几、工作日、周末或每日来划分日期,并且可以指定该日期中的时间。例如,一个四段费率配置可以将该年中的每一日都分为6小时费率期,也可以是周末2个费率和工作日2个费率。

假如您希望建立从1月1日到6月30日(时间从09:00到17:00)的星期一使用的费率,则可以综合使用这些方法。不过,由于任何时间都仅适用一个费率,您不能使用每日或工作日费率类型,因为您已经指定了费率的时间段为09:00至17:00。

取决于您如何配置这些费率和测量仪所支持的费率最大数目,您可能无法将这些费 率分配到整个年度,因此可能会存在没有为之分配任何费率的时间段。

四段费率系统的费率配置示例

在这些示例中,使用四段费率来涵盖整个年度(不存在没有关联费率的时间段)。

费率	类型	起始日	结束日	起始时间	结束时间
1	周末	6月21日	12月20日	00:00	23:59
2	周末	12月21日	6月20日	00:00	23:59
3	工作日	6月21日	12月20日	00:00	23:59
4	工作日	12月21日	6月20日	00:00	23:59

配置1:工作日和周末的四段费率

注: 23:59 的结束时间实际为 23:59:59, 或凌晨前一秒。

所有周末日期都在两个费率的其中一个费率范围内,具体情况取决于日期。所有工作日都在两个费率的其中一个费率范围内,具体情况取决于日期。此配置使用的费 率不以每天的时间为基础,也不以除工作日和周末外的任何其他日期类型为基础。

日期及对应的费率示例:

- 6月29日,星期五=费率3
- 11月28日,星期天=费率1

配置 2: 一个季节用于周末,带非峰值和肩值时间,两个季节用于工作日,带肩值时间

费率	类型	起始日	结束日	起始时间	结束时间
1	每天	1月1日	12月31日	23:00	4:59
2	工作日	5月1日	9月20日	00:00	22:59
3	工作日	10月1日	4月30日	5:00	22:59
4	周末	1月1日	12月31日	5:00	22:59

所有日期的 23:00 至 04:59 之间都适用一个费率,对应于非峰值时间。所有周末日期的 05:00 至 22:59 都适用一个费率,对应于肩值时间。所有工作日都属于两个季节(夏季或冬季)中的一个,在一天中适用两种费率。

日期及对应的费率示例:

- 3月21日,星期三,08:00=费率3
- 1月10日,星期二,21:00=费率3
- 6月24日,星期日,14:00=费率4
- 8月17日,星期五,00:00=费率1

输入模式概述

您可以使用输入模式来让设备设定的数字输入了解当前消耗的电能所适用的费率。 可以应用的各种费率数量由可用的数字输入数量和您的设备所支持的费率总数来决 定。

输入控制模式的数字输入分配

您需要分配一个或多个具有非排他性关联的数字输入,以定义有效费率。

如果数字输入用于复费率,则不能用于排他性的关联(比如需量同步),但数字输入可与非排他性关联(比如报警)共享。要使数字输入可用于设定费率,必须在初始关联源中手动删除所有冲突的关联。

数字输入作为二进制计数器使用,可识别相应的费率,其中关=0,开=1,最高 有效位 (MSB) 为数字输入2,最低有效位 (LSB) 为数字输入1。按此定义,数字输入1必须与复费率功能关联,才能将该费率设置为输入模式。

所需费率数的数字输入要求

所需费率数	要求的数字输入		
	配置 1	配置 2	
1	1 (数字输入 1)	1 (数字输入 1)	
2	1 (数字输入 1)	2(数字输入1和2)	
3	2(数字输入1和2)	2(数字输入1和2)	
4	2(数字输入1和2)	2(数字输入1和2)	

配置1:使用2个数字输入的2种费率分配

注: 此配置无任何非激活费率。

费率	数字输入 2	数字输入 1
T1	0	0
T2	0	1

配置2:使用2个数字输入的2种费率分配

注: 数字输入配置为 00 意味着无任何有效费率 (所有费率都已被禁用)。

费率	数字输入 2	数字输入 1
无	0	0
T1	0	1
T2	1	0

有效费率控制模式

根据费率模式控制有效费率。

- 当测量仪设置为命令模式时,有效费率由您的电能管理系统或其它 Modbus 主机所发送的 Modbus 命令来控制。
- 当测量仪设置为输入模式时,有效费率受数字输入的状态控制。
- 当测量仪设置为日期时间模式时,有效费率受日期类型、开始和结束时间以及 开始和结束日期控制。

使用显示屏配置日期时间模式费率

当测量仪设置为费率的日期时间模式时,激活的费率由日期类型、开始和结束时间 以及开始和结束日期来决定。

日期时间费率不是日历;测量仪不会计算某个日期是星期几,但如果您在闰年对测量仪进行编程,则认为2月29日是一个有效日期。

当使用前面板输入费率时间时,请注意所显示的分钟值包括完整的该分钟时间。例如,结束时间为01:15 包含了从01:15:00 到01:15:59 的时间。要建立紧接着此时间开始的费率期,您必须将下一费率的起始时间设置为01:16。虽然在这些费率之间似乎有一个间隔,但实际上没有。

- 1. 导航到维护>设置。
- 2. 输入设置密码(默认为"0"),然后按确定。
- 3. 导航到表计>费率。
- 4. 选择模式,然后按编辑。
- 5. 按+或-将设置更改为日期时间,然后按确定。

6. 移动光标指向您要修改的费率(费率1到费率4),然后按编辑。

参数	数值	说明
日期类型	每天、工作日、周末、星期 一、星期二、星期三、星期 四、星期五、星期六或星期 日	选择费率激活的日期。仅有 "每天"费率可带包含凌晨的费 率(例如,从午夜11时到凌 晨2时)。
起始时间	0000 至 2359	设置费率期开始的时间,使 用 24 小时制格式(00:00 到 23:59)。起始时间不能等于 结束时间。
结束时间	0000 至 2359	设置费率期结束的时间,使 用 24 小时制格式(00:00 到 23:59)。结束时间不能等于 起始时间。
起始月	1至12	设置费率期开始的月份,其 中1=一月、2=二月、3= 三月、4=四月、5=五月、6 =六月、7=七月、8=八 月、9=九月、10=十月、11 =十一月、12=十二月。
起始日	1至31	设置费率期开始的起始月中 的日期。如果起始月等于结 束月,则起始日必须早于结 束日。
结束月	1至12	设置费率期结束的月份,其 中1=一月、2=二月、3= 三月、4=四月、5=五月、6 =六月、7=七月、8=八 月、9=九月、10=十月、11 =十一月、12=十二月。
结束日	1至31	设置费率期结束的结束月中 的日期。

- 根据需要修改各个参数,然后按确定进行设置。 按向上和向下箭头按钮在参数之间移动。
- 按向上箭头退出,然后按是保存更改。
 根据需要重复设置其他费率。
 测量仪将检查配置并在任何费率设置有冲突(例如,费率期重叠)时显示一条 消息。

使用显示屏配置输入模式费率

使用显示屏配置输入模式费率。您还可以使用 ION Setup 配置输入模式费率。

如果数字输入1不可用于关联,则不能配置任何数字输入费率。与此类似,数字输入2必须可用才能选择两个以上费率。

数字输入的状态用于计算激活费率的二进制值,其中关=0,开=1。计算的费率 值数量可以不同,具体取决于可选择的数字输入的数量(即可与复费率关联的输 入)。

- 1. 导航到维护>设置。
- 2. 输入设置密码(默认为"0"),然后按确认。
- 3. 导航到表计>费率。
- 4. 选择模式,然后按编辑。
- 5. 按+或-将设置更改为输入,然后按确定。
 注:如果系统显示数字输入关联错误提示,则必须退出费率设置屏幕并删除数字输入关联。
- 6. 导航至费率,然后按编辑。

- 按+或-更改要设置的费率的数量,然后按确定。
 可应用的最大费率数量由可用数字输入的数量来决定。
- 8. 导航至输入,然后按编辑。
 如果适用,按+或-更改您要用于控制选择哪些费率(激活)的数字输入数量。按确定。
- 9. 按向上箭头退出,然后按是保存更改。

电力质量

谐波概述

本章节描述测量仪的电力质量功能以及如何访问电力质量数据。该测量仪可以测量 高达 15 次和 31 次的电压和电流谐波,并能计算总谐波失真 (THD%)。

谐波是电力系统基本频率的整数倍。谐波信息需要符合系统电力质量标准(例如 EN50160)和测量仪电力质量标准(例如 IEC 61000-4-30)。

测量仪测量相对于基本频率的基波和高次谐波。测量仪的电力系统设置可以定义当前各相并确定如何计算线电压或相电压谐波和电流谐波。

谐波用于指示提供的系统电力是否满足所需的电力质量标准或非线性负荷是否正在 对电力系统造成影响。电力系统谐波可引起零线带电和设备损坏,例如电机变热。 可使用电力调节器或谐波过滤器来将不必要的谐波最小化。

总谐波失真%

总谐波失真 (THD%) 是电力系统中存在的各相电压或电流总谐波失真的度量。 THD% 为衡量波形质量提供了一个常用指标。系统将计算各相的电压和电流 THD%。

谐波成分计算

谐波成分(H_C)等于电力系统中一相的所有非基波分量的均方根值。 测量仪使用下列方程来计算 H_C : $HC = \sqrt{(H_2)^2 + (H_2)^2 + (H_4)^2 \dots}$

THD% 计算

THD% 是波形中存在的总失真的快速度量,为谐波成分 (Hc) 与基波 (H1) 之比。 测量仪使用下列方程来计算 THD%:

$$THD = \frac{H_{C}}{H_{1}} \times 100\%$$

显示谐波数据

测量仪前面板上显示电压和电流 THD% 数据,而每相 THD%数据可以通过通讯读取。

- 1. 导航至 **THD**。
- 2. 按 安培、V L-L 或 V L-N 查看电流或电压 THD%。
- 3. 按"向上"箭头退出页面。

维护与升级

维护概述

该测量仪不包含任何用户可维修的零部件。如果测量仪需要维修,请联系当地的 Schneider Electric 技术支持部门代表。

	注意
测	量仪损坏
•	请勿打开测量仪外壳。
•	请勿试图修理测量仪的任何部件。

未按说明操作可能导致设备损坏等严重后果。

请勿打开测量仪。打开测量仪会使保修失效。

排除 LED 指示灯的故障

异常的心跳/串行通讯 LED 指示灯行为可能意味着测量仪存在潜在问题。

问题	可能的原因	可能的解决方案
当主机计算机发送数据时, LED 指示灯的闪烁速率没有发 生变化。	通讯接线	如果使用串行至 RS-485 转换 器,则跟踪并检查从计算机至 测量仪的所有接线是否正确终 结。
	内部硬件问题	执行硬复位操作:关闭测量仪 的控制电源,然后重新接通电 源。如果问题仍然存在,请联 系 Technical Support。
心跳/串行通讯 LED 指示灯持续 点亮,而不是亮灭闪烁。	内部硬件问题	执行硬复位操作:关闭测量仪 的控制电源,然后重新接通电 源。如果问题仍然存在,请联 系 Technical Support。
心跳⁄串行通讯 LED 指示灯闪 烁,但显示屏无显示。	未正确设置显示屏的设置参数	检查显示屏参数设置。

如果进行故障排除之后问题仍未解决,请联系技术支持部门寻求帮助,并确保提供 测量仪的固件版本、型号和序列号信息。

测量仪存储器

测量仪将配置和记录信息储存在永久性存储器和长寿命存储器芯片中。 测量仪使用永久性存储器 (NVRAM) 来保存所有数据和计量配置值。

测量仪电池

断电时测量仪内置电池可维持测量仪时钟运行,以保证测量仪计时不中断。 在温度为 25 °C 的典型工作条件下,测量仪内置电池的预期寿命超过 10 年。

查看固件版本、型号和序列号

您可以从显示屏面板查看测量仪的固件版本、型号和序列号:

- 1. 导航至维护>诊断。
- 2. 按信息按钮查看测量仪的型号、序列号、生产日期、操作系统版本和 RS 版本。
- 3. 按标准编辑查看编辑次数、最后一次编辑日期和最后一次编辑时间。
- 4. 按"向上"按钮退出。

固件升级

升级测量仪固件的原因有很多。

- 提高测量仪的性能 (例如,优化处理速度)
- 增强测量仪的现有特性与功能
- 为测量仪添加新功能
- 遵循日益严苛的行业新标准

技术协助

若密码丢失或有其它测量仪技术问题,请访问 www.se.com 以获取支持和帮助。

请务必在您的电子邮件中列出测量仪的型号、序列号和固件版本,或在呼叫技术支 持部门时准备好这些信息。

验证精度

查看测量仪精度

所有测量仪均已在工厂根据国际电工委员会 (IEC) 和电气与电子工程师学会 (IEEE) 的标准进行过测试和验证。

您的测量仪不需要重新校准。但是,在某些安装中,需要对测量仪进行最终的精度 验证,尤其是测量仪用于营业收费或计费应用的情况。

精度测试要求

测试测量仪精度的最常见方法是应用来自稳定电源的测试电压和电流,然后将测量仪的读数与参考设备或电能标准的读数进行比较。

信号和电源

测量仪可在电压和电流信号源发生变化时维持精度,但是其电能脉冲输出需要稳定 的测试信号才能有助于生成准确的测试脉冲。每次调整电源之后,测量仪的电能脉 冲机制需要大约 10 秒的时间才能达到稳定状态。

测量仪必须连接到控制电源才能执行精度验证测试。有关电源规格的信息,请参考测量仪的安装文档。

|--|

电击、爆炸或弧光的危险

检查确保设备电源符合设备电源的规格。

未按说明操作可能导致人身伤亡等严重后果。

控制设备

需要使用控制设备来对从电能脉冲 LED 产生的脉冲输进行计数和计时。

- 大多数标准测试工作台都带有配备了光传感器的支架,以便检测 LED 脉冲 (光电二极管电路将检测到的光转换为电压信号)。
- 参考设备或电能标准通常都具有数字输入,可检测来自外部源(即测量仪的脉冲输出)的脉冲并为其计数。

注:强烈的环境光源(例如相机闪光灯、荧光灯管、日光反射、探照灯等)会 对测试工作台上的光学传感器造成干扰。这样可能会导致测试错误。请根据需 要使用防护罩来遮挡环境光源。

环境

测量仪应在与测试设备相同的温度下进行测试。理想温度大约为23 ℃ (73 °F)。 请确保测量仪在测试之前已充分预热。

建议您在开始电能精度验证测试之前,进行 30 分钟的预热。在工厂中,测量仪在进行校准之前均已预热至典型的工作温度,以确保测量仪在工作温度下能够达到最佳精度。

大多数高精度电子设备在达到指定的性能级别之前,均需要预热时间。电能测量仪标准允许制造商根据环境温度变化和自身发热情况来指定测量仪精度降级的程度。

您的测量仪符合并满足上述电能测量仪标准的要求。

有关您的测量仪符合的精度标准的列表,请与当地的Schneider Electric代表联系,或从 www.se.com 下载测量仪手册。

参考设备或电能标准

要帮助确保测试的精度,建议您使用指定精度高于所测试测量仪 6 至 10 倍的参考 设备或参考电能标准。进行测试之前,参考设备或电能标准应按照制造商的建议进 行预热。

注:验证精度测试中使用的所有测量设备 (例如电压表、安培表、功率因数 表)的精度和准确度。

验证精度测试

下述测试作为测量仪精度测试指南;您的测量仪商店可能会提供特定的测试方法。

▲▲危险

电击、爆炸或弧光的危险

- 请穿戴好人员保护设备 (PPE),并遵守电气操作安全规程。在美国,请遵循 NFPA 70E、CSA Z462 或适用的当地标准。
- 开始在设备上工作之前,请先关闭设备的所有电源。
- 务必使用额定电压值正确的电压感应设备,以确认所有电源均已关闭。
- 切勿超过设备的最高限值。
- 检查确保设备电源符合设备电源的规格。

未按说明操作可能导致人身伤亡等严重后果。

- 1. 开始在设备上工作之前,请先关闭设备的所有电源。
- 2. 使用额定电压值正确的电压感应设备,以确认所有电源均已关闭。
- 将测试电压和电流源连接到参考设备或电能标准。请确保所测试的测量仪的所有电压输入均为并行连接,所有电流输入均为串行连接。

4. 使用以下其中一种方法连接用于为标准输出脉冲计数的控制设备:

选项	描述
电能脉冲 LED	将标准测试工作台支架上的红色光传感器对准电能脉冲 LED。
脉冲输出	将测量仪的脉冲输出连接到标准测试工作台的脉冲计数连接。

注:选择要使用的方法时,请注意,电能脉冲 LED 与脉冲输出的脉冲率限 值不同。

- 5. 执行验证测试之前,请使用测试设备接通测量仪的电源,并通电至少 30 秒的 时间。这样将有助于稳定测量仪的内部电路系统。
- 6. 配置验证精度测试的测量仪参数。
- 7. 根据为电能脉冲计数选定的方法,配置测量仪的电能脉冲 LED 或其中一项脉 冲输出以执行电能脉冲。设置测量仪的电能脉冲常量,以便与参考测试设备同 步。
- 8. 针对测试点执行精度验证。将每个测试点运行至少 30 秒的时间,以便使测试 工作台设备能够读取足够数量的脉冲。测试点之间应留出 10 秒的停止时间。

精度验证测试所需的脉冲计算

精度验证测试设备通常要求指定特定测试期所需的脉冲数量。

参考测试设备通常要求您指定持续时间为"t"秒的测试期所需的脉冲数量。通常,所 需的脉冲数量至少为 25 个脉冲,测试持续时间大于 30 秒。

使用以下公式计算所需的脉冲数量:

脉冲数量 = P总 x K x t/3600

其中:

- P总 = 总瞬时功率 (单位为千瓦 (kW))
- K = 测量仪的脉冲常量设置(单位为每 kWh 脉冲数)
- t = 测试持续时间 (单位为秒,通常大于 30 秒)

精度验证测试所需的总功率计算

精度验证测试为电能参考标准和接受测试的测量仪提供相同的测试信号(总功 率)。

按照如下所示计算总功率,其中:

- P总 = 总瞬时功率 (单位为千瓦 (kW))
- VLN = 测试点的相电压单位为伏特 (V)
- I=测试点的电流单位为安培(A)
- **PF =** 功率因数

计算的结果将四舍五入为最接近的整数。

对于平衡的3相星形系统:

P总=3xVLNxIxPFx1kW/1000W

注: 平衡的 3 相系统假定所有相的电压、电流和功率因数值均相同。 对于单相系统:

P总 = VLN x I x PF x 1 kW/1000W

精度验证测试所需的错误百分比计算

精度验证测试需要计算接受测试的测量仪和参考标准值之间的错误百分比。

使用以下公式计算每个测试点的错误百分比:

电能错误 = (EM - ES) / ES x 100%

其中:

- EM = 通过所测试的测量仪测量到的电能
- ES = 通过参考设备或电能标准测量到的电能

注:如果精度验证显示测量仪不精确,则这些结果可能是由典型的测试误差源造成。如果未发现测试误差源,请与当地的 Schneider Electric 代表联系。

精度验证测试点

测量仪应在满载和轻负载以及滞后(电感)功率因数的条件下进行测试,以便确保能够测试测量仪的整个量程范围。

测试电流和电压输入额定值均已在测量仪上标出。有关测量仪的额定电流、电压和频率规格,请参考安装表或数据表。

瓦时测试点	精度验证测试点示例
满载	额定电流的 100% 至 200%,额定电压和额定频率的 100%,单位功率因数或功率因数为一(1)。
轻负载	额定电流的 10%,额定电压和额定频率的 100%,单位功率因数或功率因数为一 (1)。
电感负载(滞后功率因 数)	额定电流的 100%,额定电压和额定频率的 100%,0.50 滞后功率因数 (电流滞后电压 60°相角)。
	r
无功时测试点	精度验证测试点示例
满载	额定电流的 100% 至 200%,额定电压和额定频率的 100%,0 功率因数 (电流滞后电压 90°相角)。
轻负载	额定电流的 10%,额定电压和额定频率的 100%,0 功率因数(电流滞后 电压 90°相角)。
电感负载(滞后功率因 数)	额定电流的 100%,额定电压和额定频率的 100%,0.87 滞后功率因数 (电流滞后电压 30° 相角)。

电能脉冲注意事项

测量仪的电能脉冲 LED 和脉冲输出能够在指定限值范围内产生电能脉冲。

说明	电能脉冲 LED	脉冲输出
最大脉冲频率	35 Hz	20 Hz
最小脉冲常量	每 k_h 1 次脉冲	
最大脉冲常量	每 k_h 9,999,000 次脉冲	

脉冲率取决于输入信号源的电压、电流和功率因数,以及相数、电压互感器变比和电流互感器变比。

如果 P 总是瞬时功率 (单位为 kW) , K 是脉冲常量 (单位为每 kWh 脉冲数) , 则脉冲周期为:

脉冲周期(秒) = <u>3600</u> = <u>1</u> <u>脉冲频率 (Hz)</u>

电压互感器和电流互感器注意事项

总功率 (P总)产生于次边的电压和电流输入值,并且考虑了电压互感器变比和电流互感器变比。

无论使用电压互感器还是电流互感器,均始终从次边来获取测试点。

如果使用电压互感器和电流互感器,则必须在计算公式中包含其一次和二次额定值。例如,在使用电压互感器和电流互感器的平衡3相星形系统中:

Ptot = 3 x VLN x
$$\frac{VT_p}{VT_s}$$
 x I x $\frac{CT_p}{CT_s}$ x PF x $\frac{1 \text{ kW}}{1000 \text{ W}}$

其中,P总=总功率,VTp=VT 原边,VTs=VT 次边,CTp=CT 原边,CTs=CT 次边,PF=功率因数。

计算示例

此计算示例显示了如何计算功率、脉冲常量和最大脉冲频率以及如何决定可以降低最大脉冲频率的脉冲常量。

平衡的 3 相星形系统使用 480:120 伏 VT 和 120:5 安 CT。二次回路的信号电压为 119 伏相电压,电流为 5.31 安,功率因数为 0.85。所需的脉冲输出频率为 20 Hz (每秒 20 个脉冲)。

1. 计算典型的总输出功率 (P 总):

Ptot =
$$3 \times 119 \times \frac{480}{120} \times 5.31 \times \frac{120}{5} \times 0.85 \times \frac{1 \text{ kW}}{1000 \text{ W}} = 154.71 \text{ kW}$$

2. 计算脉冲常量 (K):

K = <u>3600 × (脉冲频率)</u> = <u>3600 秒/小时 × 20 脉冲/秒</u> P总 = <u>154.71 kW</u>

K = 465.5 脉冲/kWh

3. 在满载 (额定电流的 120% = 6 A) 和功率因数 (PF = 1) 时,计算最大总输出 功率 (Pmax):

$$Pmax = 3 \times 119 \times \frac{480}{120} \times 6 \times \frac{100}{5} \times 1 \times \frac{1 \text{ kW}}{1000 \text{ W}} = 205.6 \text{ kW}$$

4. 计算 Pmax 时的最大输出脉冲频率:

最大脉冲频率 = $\frac{K \times Pmax}{3600}$ = $\frac{465.5 脉 / kWh \times 205.6 kW}{3600 秒 / 小时}$

最大脉冲频率 = 26.6 脉冲/秒 = 26.6 Hz

- 5. 根据 LED 和脉冲输出的限制,检查最大脉冲频率:
 - 26.6 Hz ≤ LED 最大脉冲频率 (35 Hz)
 - 26.6 Hz > 脉冲输出最大脉冲频率 (20 Hz)

注:最大脉冲频率在 LED 电能脉冲的限制范围内。但是,最大脉冲频率大于脉冲输出电能脉冲的限制。脉冲输出频率大于 20 Hz 将使脉冲输出饱和,导致它停止发送脉冲。因此,在此示例中,您仅可将 LED 用于电能脉冲。

调整以支持脉冲输出时的电能脉冲

如果您要使用脉冲输出,则必须减小输出脉冲频率,使其位于限制范围之内。

使用上述示例中的值,脉冲输出的最大脉冲常量为:

Kmax =
$$\frac{3600 \text{ x} (数字输出最大脉冲频率)}{\text{Pmax}}$$
 = $\frac{3600 \times 20}{205.6}$

Kmax = 350.14 脉冲/kWh

 将脉冲常量 (K) 设置为低于 Kmax 的值,例如,300 脉冲 kWh。计算 Pmax 时 新的最大输出脉冲频率:

新最大脉冲频率 = $\frac{K \times Pmax}{3600} = \frac{300 km/kWh \times 205.6 kW}{3600 \hbar/小时}$

新最大脉冲频率 = 17.1 脉冲/秒 = 17.1 Hz

- 2. 根据 LED 和脉冲输出的限制,检查新的最大脉冲频率:
 - 17.1 Hz ≤ LED 最大脉冲频率 (35 Hz)
 - 17.1 Hz ≤ 脉冲输出最大频率 (20 Hz)

正如您所预期的一样,将K更改为低于Kmax的值之后,您可以将脉冲输出用于电能脉冲。

3. 在测量仪中设置新脉冲常量 (K)。

典型测试误差源

如果在精度测试期间发现误差过大,请检查测试设置和测试过程,以消除典型的测量误差源。

典型的精度验证测试误差源包括:

- 电压或电流电路的连接松动,通常由磨损的触点或端子造成。检查测试设备、 电缆、测试装置和对其进行测试的测量仪。
- 测量仪的环境温度与 23℃ (73°F) 相差太大。
- 相电压不平衡的任意配置中存在浮动(未接地)中性电压端子。
- 测量仪的控制电源不足,导致测量仪在测试过程中复位。
- 环境光干扰或光学传感器的灵敏度问题。
- 电源不稳定导致电能脉冲波动。
- 测试设置不正确:未将所有相连接到参考设备或电能标准。连接到被测测量仪的所有相应该同时连接到参考表计/标准。
- 被测测量仪中存在湿气(冷凝湿度)、碎屑或污染。

功率、电能和功率因数

功率、电能和功率因数

在测量仪的电压和电流输入测得的样本测量结果提供用于计算功率和功率因数的数据。

在一个平衡3相交流(AC)电力系统源中,载流导体上的交流电压波形相等但是到 1/3周期时抵消(3个电压波形间的相角偏移为120°)。

电流相角与电压相角的偏移

电流可能会滞后、超前、或与交流电压波形同相,通常与负载类型有关——电感负载、电容负载或阻性负载。

对于纯阻性负载,电流波形与电压波形同相。对电容负载,电流超前电压。对电感 负载,电流滞后电压。

下图显示在理想(实验室)环境下,各负荷类型的电压和电流波形如何偏移。

真实功率、无功功率和视在功率 (PQS)

典型的交流电力系统负荷均具有阻性负载组件和无功(电感或电容)组件。

真实功率,又称有功功率(P),是阻性负载消耗的功率。无功功率(Q)是电感 负载消耗或电容负载产生的功率。

视在功率(S)是测量的电力系统提供真实和无功功率的能力。

真实功率 P 的单位为瓦特(W 或 kW),无功功率 Q 的单位为乏(VAR 或 kVAR),视在功率 S 的单位为伏安(VA 或 kVA)。

功率流

正真实功率 P(+)从电源流向负载。负真实功率 P(-)从负载流向电源。

功率因数 (PF)

功率因数 (PF) 是真实功率 (P) 与视在功率 (S) 之比。

功率因数 (PF) 为 -1 到 1 或 -100% 到 100% 之间的一个数字,符号由约定确 定。

$$PF = \frac{P}{S}$$

纯阻性负载没有无功组件,因此其功率因数为1(PF=1,或单位功率因数)。感 抗或容抗负载向电路中引入一个无功功率(Q)分量,从而导致 PF 接近0。

真实 PF 和位移 PF

测量仪支持真实功率因数和位移功率因数值:

- 真实功率因数包括谐波分量。
- 位移功率因数仅考虑基本频率。
 注:如未指定,测量仪显示的功率因数为真实功率因数。

功率因数符号约定

功率因数符号(PF符号)可以为正或负,由IEEE或IEC使用的公约定义。可将用于显示屏的功率因数符号(PF符号)约定设置为IEC或IEEE。

PF 符号约定: IEC

PF 符号与真实功率 (kW) 流动的方向相关:

• 象限 1 和象限 4: 对于正真实功率 (+kW), PF 符号为正 (+)。
• 象限 2 和象限 3: 对于负真实功率 (-kW), PF 符号为负 (-)。

PF符号约定:IEEE

PF 符号与 PF 超前/滞后约定相关,换句话说,即有效负载类型(电感负载或电容 负载):

- 对于电容负载(PF超前,象限2和象限4),PF符号为正(+)。
- 对于电感负载 (PF 滞后,象限 1 和象限 3), PF 符号为负 (-)。

功率因数最小最大值约定

测量仪使用特定的换算确定功率因数的最小和最大值。

- 对于负 PF 读数, PF 读数介于 -0 到 -1 之间, 最小 PF 值为最接近 -0 的测量值。对于正 PF 读数, PF 读数介于 +1 到 +0 之间, 最小 PF 值为最接近 +1 的测量值。
- 对于负 PF 读数, PF 读数介于 -0 到 -1 之间,最大 PF 值为最接近 -1 的测量 值。对于正 PF 读数, PF 读数介于 +1 到 +0 之间,最大 PF 值为最接近 +0 的 测量值。

功率因数寄存器格式

测量仪可对 PF 值执行简单的算法,然后将其存储在 PF 寄存器中。

每个功率因数值(PF值)占用功率因数的一个浮点寄存器(PF寄存器)。测量仪和软件根据下图来解释所有报告或数据条目字段的 PF寄存器。

PF 值是使用以下公式从 PF 寄存器值中计算得出的:

象限	PF 范围	PF 寄存器范围	PF 公式
象限 1	0至+1	0至+1	PF值=PF寄存器值
象限 2	-1至0	-1至0	PF值=PF寄存器值
象限 3	0至-1	-2 至-1	PF 值 = (-2) - (PF 寄 存器值)
象限 4	+1至0	+1至+ 2	PF 值 = (+2) - (PF 寄 存器值)

规格

本节中包含的规格可能不经通知而更改。 有关安装和接线的信息请参考测量仪安装工作表。

机械特性

IP 保护等级 (IEC 60529-1)	前显示屏:IP54
	测量仪壳体:IP30
面板最大厚度	最大值为 6.0 mm
安装位置	竖直
显示屏类型	LCD 显示屏:单色图形 LCD
键盘	4个按钮,包括直观导航
前面板 LED 指示灯	绿色指示灯(心跳/串行通讯活动)
	琥珀色色指示灯(报警/电能脉冲输出)
重量	~ 300 g
尺寸WxHxD	96 x 96 x 73 mm (最大值)
保护功能	设置参数密码保护
Relay	A型2端子电子机械式继电器

电气特性

测量精度 – PM2210 / PM2220

参数	精度	范围
电流、相位	± 0.5%	
电压 L-N、L-L	± 0.5%	
功率因数	±0.01 计数	0.5(感性)至0.8(容性)
有功功率	± 1%	
视在功率		
无功功率		
频率	± 0.05%	45 Hz 至 65 Hz
有功电能	1 类,符合 IEC 62053-21	
视在电能	± 0.5%	In = 5 A 额定值 CT 2
无功电能	1 类,符合 IEC 62053-24	
THD 和单个谐波	满量程的 ±5%	高达 15 次谐波 (仅限 PM2220)

测量精度 – PM2230

参数	精度	范围
IEC 61557-12	PMD-II / [SD 或 SS] / K55 / 0.5	
电流、相位	0.5 类,符合 IEC 61557-12	10% I _n 至 120% I _n ,I _n = 5 A
	± 0.2% ³	

2. 3. 在 1 A CT 额定值条件下,50 mA 到 150 mA 的附加误差为 ±1 %,电流 > 10 mA 到 < 50 mA 的附加误差为 ±2 %。

250 mA 至 6 A。

测量精度 - PM2230 (持续)

参数	精度	范围
相电压	0.5 类,符合 IEC 61557-12	$20~\%U_n$ Ξ 120 $\%U_n$, U_n = 230 V L-N , 240 V L-N N
	± 0.2% ⁴	
功率因数	0.5 类,符合 IEC 61557-12	05(武地)天00(南地)
	±0.01 计数	0.5(念住)主0.6(谷住)
有功功率	0.5 类,符合 IEC 61557-12	1% I _n 至 120% I _n ,I _n = 5 A
视在功率	0.5 类,符合 IEC 61557-12	1% I _n 至 120% I _n ,I _n = 5 A
		0.5(感性)至 0.8(容性)
无功功率	1 类,符合 IEC 61557-12	2% I_n Ξ 120% I_n , I_n = 5 A ,
		Sin Ə , 0.25 (感性) 至 0.25 (容性)
频率	0.5 类,符合 IEC 61557-12	<u> 45 년</u> 7 중 65 년7
	± 0.05%	
有功电能	0.5 类,符合 IEC 61557-12	
	Class 0.5S,符合 IEC 62053-22	
视在电能	0.5 类,符合 IEC 61557-12	
	± 0.5%	In - 5 A 5
无功电能	1 类,符合 IEC 62053-24	
	1 类,符合 IEC 61557-12	
THD 和单个谐波	0.5 类,符合 IEC 61557-12	高达 15 次谐波
	满量程的 ±5%	高达 31 次谐波

电压输入

参数	范围
主电压互感器	999 kV L-L (最大值),启动电压取决于 VT 变比
额定电压	277 V L-N / 480 V L-L
满量程测量电压	35 - 480 V L-L (20 - 277 V L-N), CAT III
	35 - 600 V L-L (20 - 347 V L-N), CAT II
永久性过载	750 V AC L-L
阻抗	≥ 5 MΩ
频率	50 / 60 Hz 额定值 ± 5%
VA 负荷	< 0.2 VA (240 V AC L-N)

电流输入

参数	范围
CT 额定值	原边可调节范围为1A到32767A
	次边为1A或5AI-额定值
测量电流	5 mA 至 6 A
抑制电流 (用于忽略微小负载)	5 mA 至 99 mA
耐受值	连续12A;50A(10秒/小时),500A(1秒/小时)
阻抗	< 0.3 mΩ

^{4.} 5.

¹⁰⁰ V 至 300 V 在 1 A CT 额定值条件下,50 mA 到 150 mA 的附加误差为 ±1 %,电流 > 10 mA 到 < 50 mA 的附加误差为 ±2 %。Class 0.5S 测量仪类 型符合部分标准(仅关于电能测试的条款)

电流输入(持续)

参数	范围
频率	50 / 60 Hz 额定值
VA 负荷	电流为 6 A 时 < 0.024 VA

交流控制电源 - PM2210/PM2220

参数	范围
工作范围	44 - 277 V L-N ± 10%
负荷	< 6 VA (277 V L-N)
频率范围	45 - 65 Hz
跨越时间	在 120VAC 和最大负荷下典型值为 100 毫秒
	在 230 VAC 和最大负荷下典型值为 400 毫秒

交流控制电源 - PM2230

参数	范围
工作范围	80 - 277 V L-N ± 10%
负荷	< 8 VA (277 V L-N)
频率范围	45 - 65 Hz
跨越时间	在 120 VAC 和最大负载下的典型值为 100 毫秒 - 采用模拟 IO 模块时为 50 毫秒
	在 230 VAC 和最大负载下的典型值为 400 毫秒 - 采用模拟 IO 模块时为 250 毫秒

直流控制电源 - PM2210/PM2220

参数	范围
工作范围	48 - 277 V DC ± 10%
负荷	< 2 W (277 V DC)
跨越时间	在 125 V DC 和最大负荷下典型值为 50 毫秒

直流控制电源 - PM2230

参数	范围
工作范围	100 - 277 V DC ± 10%
负荷	< 3.3 W (277 V DC)
跨越时间	在 125 V DC 和最大负荷下典型值为 50 毫秒

显示屏更新

参数	范围
瞬时	1秒
需量	15 秒
谐波	5秒

接线配置

用户可编程	通过 HMI 和 ION setup 配置
	1相2线相电压
	1相2线线电压
	1相3线线电压,含中性相(2相)
	3相3线无接地三角形
	3相4线接地星形
	3相3线角接地三角形
	3相3线无接地星形
	3相3线接地星形
	3相3线阻抗接地星形
	3相4线中心抽头式开放三角形
	3相4线中心抽头式三角形
	3相4线无接地星形
	3相4线阻抗接地星形

数字 I/O - PM2230

参数	范围
绝缘	2.5 kV RMS
数字(状态)输入	
电压额定值	开 18 至 36 V DC
	关0至4VDC
数字输出	
负载电压	≤ 40 V 直流
负载电流	≤ 20 mA
开启电阻	≤ 50 Ω
数字输出的脉冲持续时间6	[20、25、50、100] ms

模拟 I/O - PM2230

参数	范围
更新频率	1秒
模拟输入	
测量范围	4-20 mA
最大源阻抗	> 500 Ω
模拟输出	
测量范围	4-20 mA
负载阻抗	≤ 600 Ω

继电器 - PM2230

参数	范围
电压额定值	250 V AC / 2A
	24 V DC / 2A
转换电流	5 A,250 V AC / 30 V DC (cos φ=1),10 万个周期

6. 指示该功能可以通过通讯配置。

继电器 - PM2230 (持续)

参数	范围
	2 A,250 V AC / 30 V DC (cos φ=0.4),10 万个周期 500 mA,250 V AC / 30 V DC,100 万个周期
输出频率	最大 0.5 Hz (1 秒开启 / 1 秒关闭)
激励电压	24 V DC / 8 mA(最大值)

环境特性

参数	范围
运行温度	-10 °C 至 +60 °C (14 °F 至 140 °F)
存放温度	-25 °C 至 +70 °C(-13 °F 至 158 °F)
额定湿度	50 °C (122 °F)条件下相对湿度为 5% 至 95% (无冷凝)
污染等级	2
海拔高度	< 2000 m (6562 ft)
Location	不适合潮湿的场所
产品寿命	>7年

EMC(电磁兼容性)+5

静电放电	IEC 61000-4-2
辐射抗扰性	IEC 61000-4-3
快速瞬变抗扰性	IEC 61000-4-4
脉冲波抗扰性	IEC 61000-4-5
传导抗扰性	IEC 61000-4-6
磁场抗扰性	IEC 61000-4-8
电压骤降抗扰性	IEC 61000-4-11
辐射 (IEC61326-1)	辐射 FCC 第 15 部分 A/CE 类

+5 按照 IEC 61326-1 辐射标准进行测试

安全性

欧洲	CE,符合 IEC 61010-1 Ed-3
美国和加拿大	cULus,符合 UL 61010-1
	CAN / CSA-C22.2 No. 61010-1 (600 V AC)
测量类别(电压和电流输入)	CAT III 可以高达 480 V L-L
	CAT II 可以高达 600 V L-L
过压类别 (控制电源)	CAT III 可以高达 300 V L-N
介电	符合 IEC / UL 61010-1 Ed-3
保护等级	Ⅱ,用户可接触部分双绝缘
其他认证	RCM

参数	范围
端口数	1
最大电缆长度	1000 米(3280 英尺)
最大设备数量(单位负荷)	一条总线上最多为 32 个设备
Parity	偶、奇和无 (奇校验或偶校验为 1 个停止位 , 无校验则为 2 个停止位)
Baud rate	4800, 9600, 19200, 38400
绝缘	2.5 kV 真有效值,双绝缘

脉冲输出

参数	范围
脉冲输出 (POP)	最大值 40 V DC, 20 mA
	20 ms 上电时间
	可配置脉冲分量在 1 到 9999000 次脉冲/ k_h (kWh、kVAh 或 kVARh)

实时时钟

电池备用时间	3年
	注:当己配置好日期和时间且测量仪处于关闭状态时。

Schneider Electric 35 rue Joseph Monier 92500 Rueil Malmaison France

+ 33 (0) 1 41 29 70 00

www.se.com

由于各种标准、规范和设计不时变更,请索取对本出版物中给出的信息 的确认。

©2020 – Schneider Electric. 版权所有 NHA2778903-06