SM6

Modular units

Air insulated switchgear up to 36 kV

In addition to its technical characteristics, SM6 meets requirements concerning safety of life and property as well as ease of installation, operation and protecting the environment.

SM6 units are designed for indoor installations.
Their compact dimensions are:
■ 375 to 1500 mm width

- 1600 to 2250 mm height
- 840 to 1400 mm depth...
... this makes for easy installation in small rooms or prefabricated substations. Cables are connected via the front.
All control functions are centralised on a front plate, thus simplifying operation. The units may be equipped with a number of accessories (relays, toroids, instrument transformers, surge arrester, control and monitoring, etc.).

Normal operating conditions

- Ambient air temperature:

1) less than or equal to $40^{\circ} \mathrm{C}$
2) less than or equal to $35^{\circ} \mathrm{C}$ on average over 24 hours
3) greater or equal to $-5^{\circ} \mathrm{C}$.

- Altitude

1) less than or equal to 1000 m
2) above 1000 m , a derating coefficient is applied (please consult us).

■ Solar radiation

1) no solar radiation influence is permitted.

■ Ambient air pollution

1) no significant pollution by dust, smoke, corrosive and/or flammable gases, vapours or salt.

■ Humidity

1) average relative humidity over a 24 hour period, less than or equal to 95% 2) average relative humidity over a 1 month period, less than or equal to 90% 3) average vapor pressure over a 24 hour period, less than or equal to 2.2 kPa 4) average vapor pressure over a 1 month period, less than or equal to 1.8 kPa .

For these conditions, condensation may occasionally occur. Condensation can be expected where sudden temperature changes occur in periods of high humidity.
To withstand the effects of high humidity and condensation, such as breakdown of insulation, please pay attention on Civil Engineering recommendations for design of the building or housing, by suitable ventilation and installation.

Severe operating conditions (please consult us).

Standards

SM6 units meet all the following standards and specifications:
■ IEC standards
62271-200 High-voltage switchgear and controlgear - Part 200: A.C. metalenclosed switchgear and controlgear for rated voltage above 1 kV and up to and including 52 kV .
62271-1 High-voltage switchgear and controlgear - Part 1: Common specifications.

60265-1 High voltage switches - Part 1: switches for rated voltages above 1 kV and less or equal to 52 kV .
62271-105 High-voltage switchgear and controlgear - Part 105: High voltage alternating current switch-fuse combinations.
60255 Electrical relays.
62271-100 High-voltage switchgear and controlgear - Part 100: High-voltage alternating current circuit breakers.

62271-102 High-voltage switchgear and controlgear - Part 102: High-voltage alternating current disconnectors and earthing switches.
60044-1 Instrument transformers - Part 1: Current transformers.
60044-2 Instrument transformers - Part 2: Voltage transformers.
60044-8 Instrument transformers - Part 8: Low Power Current Transducers.
61958 High-voltage prefabricated switchgear and controlgear assemblies Voltage presence indicating systems.

■ UTE standards for 24 kV

NFC 13.100 Consumer substation installed inside a building and fed by a second category voltage public distribution system.

NFC 13.200 High voltage electrical installations requirements.
NFC 64.130 High voltage switches for rated voltage above 1 kV and less than 52 kV .
NFC 64.160. Alternating current disconnectors and earthing switches
EDF specifications for $\mathbf{2 4} \mathbf{~ k V}$
HN 64-S-41 A.C. metal-enclosed swichgear and controlgear for rated voltages above 1 kV and up to and including 24 kV .

HN 64-S-43 Electrical independent-operating mechanism for switch 24 kV - 400 A .

Main characteristics

The hereunder values are for working temperatures from $-5^{\circ} \mathrm{C}$ up to $+40^{\circ} \mathrm{C}$ and for a setting up at an altitude below 1000 m .

Electrical characteristics

Rated voltage	Ur	kV		7.2	12	17.5	24	36
Insulation level								
Insulation	Ud	50/60 Hz, 1 min (kV rms)		20	28	38	50	70
Isolation	Ud	$50 / 60 \mathrm{~Hz}, 1 \mathrm{~min}(\mathrm{kV} \mathrm{rms})$		23	32	45	60	80
Insulation	Up	1.2/50 $\mathrm{\mu s}$ (kV peak)		60	$75{ }^{(1)}$	95	125	170
Isolation	Up	1.2/50 $\mathrm{\mu s}$ (kV peak)		70	85	110	145	195
Breaking capacity								
Transformer off load		A		16				
Cables off load		A		31.5				50
Rated current	Ir	A		400-630-1250				630-1250
Short-time withstand current	Ik/tk ${ }^{(2)}$	kA/1 s	25	630-1250				1250
			$20^{(3)}$	630-1250				
			16	630-1250				
			12.5	400-630-1250				630-1250
Making capacity (50 Hz)	Ima	kA	62.5	630		NA		
			50	630				630
				630				630
			31.25	400-630				630
Maximum breaking capacity (Isc)								
Units IM, IMC, IMB, NSM-cables, NSM-busbars				630-800 ${ }^{(4)}$				630
QM, QMC, QMB		kA		25		20		20
PM KA				25				20
CRM kA				10 8		NA		
CRM with fuses kA				25		NA		
CVM		kA		6.3 NA				
CVM with fuses		kA		25 NA				
SF6 circuit breaker range								
DM1-A, DM1-D, DM1-W, DM2		kA	25	630-1250				1250
			20	630-1250				
DM1-S		kA	25					NA
DM1-Z			25	630				NA
DM2-W		kA	25	NA				1250
			20	NA				630
Vacuum circuit breaker range								
DMV-A, DMV-D, DMV-S		kA	25	630-1250			NA	
DMVL-A		kA	20	630				NA
DMVL-D		kA	25	630				NA

NA: Non Available
(1) 60 kV peak for the CRM unit
(2) 3 phases
(3) In 20 kA/3 s, consult us
(4) In 800 A, consult us.

Endurance

Units	Mechanical endurance	Electrical endurance
Units IM, IMC, IMB, PM, QM ${ }^{(5)}$, QMC ${ }^{(5)}$, QMB ${ }^{(5),}$ NSM-cables, NSM-busbars	IEC 60265 1000 operations class M1	IEC 60265-1 100 breaks at Ir, p.f. $=0.7$, class E3
CRM Disconnector	$\begin{aligned} & \text { IEC } 62271-102 \\ & 1000 \text { operations } \\ & \hline \end{aligned}$	
Rollarc 400	$\begin{aligned} & \text { IEC } 60470 \\ & 300000 \text { operations } \end{aligned}$	$\begin{aligned} & \text { IEC } 60470 \\ & 100000 \text { breaks at } 320 \mathrm{~A} \\ & 300000 \text { breaks at } 250 \mathrm{~A} \end{aligned}$
Rollarc 400D	100000 operations	100000 breaks at 200 A
CVM Disconnector	$\begin{aligned} & \text { IEC } 62271-102 \\ & 1000 \text { operations } \end{aligned}$	
Vacuum contactor	IEC 60470 2500000 operations 250000 with mechanical latching	$\begin{aligned} & \text { IEC } 60470 \\ & 250000 \text { breaks at Ir } \end{aligned}$
SF6 circuit breaker range		
DM1-A, DM1-D,	$\begin{aligned} & \text { IEC } 62271-102 \\ & 1000 \text { operations } \\ & \hline \end{aligned}$	
DM1-W, SF circuit breaker DM1-Z, DM1-S, DM2 DM2-W	IEC 62271-100 10000 operations class M2	IEC 62271-100 30 breaks at 12.5 kA for 24 kV 25 breaks at 25 kA for 24 kV 40 breaks at 16 kA for 36 kV 15 breaks at 25 kA for 36 kV 10000 breaks at Ir, p.f. $=0.7$, class E2
Vacuum circuit breaker range		
DMV-A, Switch DMV-D, DMV-S	IEC 60265 1000 operations class M1	IEC 60265 100 breaks at Ir, p.f. $=0.7$, class E3
Evolis circuit breaker	IEC 62271-100 10000 operations class M2	IEC 62271-100 10000 breaks at Ir, p.f. $=0.7$, class E2
DMVL-A Disconnector DMVL-D	$\begin{aligned} & \text { IEC } 62271-102 \\ & 1000 \text { operations } \\ & \hline \end{aligned}$	
Evolis circuit breaker	IEC 62271-100 10000 operations class M2	IEC 62271-100 10000 breaks at Ir, p.f. $=0.7$, class E2

(5) As per recommendation IEC 62271-105, three breakings at p.f. $=0.2$

800 A under 36 kV ; 1400 A under 24 kV ; 1730 A under $12 \mathrm{kV} ; 2600 \mathrm{~A}$ under 5.5 kV .
Internal arc withstand (in accordance with IEC 62271-200):

- SM6 24 kV:
- standard: $12.5 \mathrm{kA} 1 \mathrm{~s}, \mathrm{IAC}: ~ A-F L$
- enhanced: $16 \mathrm{kA} 1 \mathrm{~s}, \mathrm{IAC}: A-F L R \& I A C: A-F L$
- SM6 36 kV:
\square standard: $16 \mathrm{kA} 1 \mathrm{~s}, \mathrm{IAC}:$ A-FL.

Protection index:

- classes: PI (insulating partition)
- loss of service continuity classes: LSC2A
- units in switchboard: IP3X
- between compartments: IP2XC

■ Cubicle: IK08.

Electro-magnetic compatibility:

■ relays: 4 kV withstand capacity, as per recommendation IEC 60801.4

- compartments:
\square electrical field:
- 40 dB attenuation at 100 MHz
- 20 dB attenuation at 200 MHz
- magnetic field: 20 dB attenuation below 30 MHz .

Temperatures:

The cubicles must be stored and installed in a dry area free from dust and with limited temperature variations.
■ for stocking: from $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

- for working: from $-5^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$

■ other temperatures, consult us.

Functional units selection

Network connection

Electrical characteristics

Basic equipment:

- switch and earthing switch
- three-phase busbars
- CIT operating mechanism
- voltage presence indicator
- 150 W heating element for 36 kV
- connection pads for dry-type cables
\square three-phase bottom busbars for outgoing lines (right or left)
- one to three CTs for 24 kV
- three CTs for 36 kV

Versions:

- Cl 2 operating mechanism
- Cl1 operating mechanism

Cl1 operating mechanism for 36 kV
Cl1 operating mechanism

- in 800 A version for 24 kV , consult us

Optional accessories:

motor for operating mechanism auxiliary contacts	630 A three-phase upper busbars for severe operating conditions for 24 kV visibility of main contacts for 24 kV
- key-type interlocks	- pressure indicator device for 24 kV
- release units (coil)	- enlarged low-voltage control cabinet for 24 kV
- operation counter	- 50 W heating element for 24 kV
- 1250 A three-phase upper busbars	- cable connection by the top for 24 kV (no internal arc withstand if selected)

■ fault indicators
■ Connection pads for two dry-type single-core cables for 36 kV

- digital ammeter
- surge arresters (for 36 kV and for 24 kV in 500 mm wide cubicle)

Functional units selection

Fuse-switch protection

QM
Fuse-switch combination unit

Electrical characteristics

Basic equipment:

■ switch and earthing switch

- three-phase busbars
- Cl1 operating mechanism
- voltage presence indicator
- equipment for three DIN striker fuses
- mechanical indication system for blown fuses
- 150 W heating element for 36 kV
- connection pads for dry-type cables
- downstream earthing switch 2 kA rms making capacity

QMC
Fuse-switch combination unit

QMB
Fuse-switch combination unit Outgoing line right or left

Operating mechanisms

The control devices required for the unit operating mechanisms are centralised on the front panel. The different types of operating mechanism are presented in the table opposite.
Operating speeds do not depend on the operator, except for the CS.

Units	Type of operating mechanism						
	Switch/disconnector					Circuit breaker	
	CIT	Cl1	CI2	CS	CC	RI	P2
IM, IMB	\square	\square	\square				
IMC	\square		\square				
PM	\square						
QM		\square	\square				
QMC, QMB		\square					
CM, CM2, CRM, CVM				\square			
DM1-A, DM1-D, DM1-S, DM1-Z, DM2, DMVL-A, DMVL-D				\square		\square	
DM1-A(*), DM1-W, DM2-W				\square	\square	\square	
DMV-A, DMV-D, DMV-S	\square						\square
NSM-cables, NSM-busbars			\square				
GAM					\square		
SM, TM				\square			
EMB	\square						
$■$ Provided as standard \square Other possibility $\left(^{*}\right) 1250 \mathrm{~A}$ version							

Operating mechanism types	CIT		Cl1		Cl 2			CS1	
Unit applications	Load-break switch Fused switch		Load-break switch Fuse switch combination		Load-break switch Fuse switch combination			Disconnector	
Main circuit switch	Closing	Opening	Closing	Opening	Mechanism charging	Closing	Opening	Closing	Opening
Manual operating mode	Hand lever	Hand lever	Hand lever	Push button	Hand lever	Push button	Push button	Hand lever	Hand lever
Electrical operating mode (option)	Motor	Motor	Motor	Coil	Motor	Coil	Coil	N/A	N/A
Speed of operation	1 to 2s	1 to 2 s	4 to 7 s	35 ms	4 to 7 s	55 ms	35 ms	N/A	N/A
Network applications	Remote control network management		Remote control transformer protection		Remote control network management, need of quick reconfiguration (generator source, loop)			N/A	
Earthing switch	Closing	Opening	Closing	Opening	N/A	Closing	Opening	Closing	Opening
Manual operating mode	Hand lever								

Double-function operating mechanism CIT

- Switch function

Independent-operation opening or closing by lever or motor.

- Earthing-switch function

Independent-operation opening or closing by lever.
Operating energy is provided by a compressed spring which, when released,
causes the contacts to open or close.

- Auxiliary contacts

ㅁ switch (2 O + 2 C) *,

- switch $(2 \mathrm{O}+3 \mathrm{C})$ and earthing switch $(1 \mathrm{O}+1 \mathrm{C})$,
\square switch $(1 \mathrm{C})$ and earthing switch $(1 \mathrm{O}+1 \mathrm{C})$ if motor option.
■ Mechanical indications
Fuses blown in unit PM.
- Motor option
(*) Included with the motor option

Operating mechanisms

Double-function operating mechanism Cl1

■ Switch function
\square independent-operation closing by lever or motor.
Operating energy is provided by a compressed spring which, when released, causes the contacts to open to close.
\square independent-operation opening by push-button (O) or trip units.

- Earthing-switch function

Independent-operation closing and opening by lever.
Operating energy is provided by a compressed spring which, when released, causes the contacts to open or close.

- Auxiliary contacts
\square switch $(2 \mathrm{O}+2 \mathrm{C})^{*}$,
\square switch $(2 \mathrm{O}+3 \mathrm{C})$ and earthing switch $(1 \mathrm{O}+1 \mathrm{C})$,
\square switch (1C) and earthing switch ($1 \mathrm{O}+1 \mathrm{C}$) if motor option,
\square fuses blown (1 C).
- Mechanical indications

Fuses blown in units QM.
■ Opening releases
\square shunt trip,
\square undervoltage for unit QM.

- Motor option
(*) Included with the motor option.

Double-function operating mechanism CI2

- Switch function
- independent-operation closing in two steps:

1 - operating mechanism recharging by lever or motor,
2 - stored energy released by push-button (I) or trip unit.
\square independent-operation opening by push-button (O) or trip unit.

- Earthing-switch function

Independent-operation closing and opening by lever.
Operating energy is provided by a compressed spring which, when released, causes the contacts to open or close.

- Auxiliary contacts
\square switch $(2 \mathrm{O}+2 \mathrm{C})^{\text {* }}$,
\square switch $(2 \mathrm{O}+3 \mathrm{C})$ and earthing switch $(1 \mathrm{O}+1 \mathrm{C})$,
\square switch (1C) and earthing switch (1 O + 1 C) if motor option.
- Opening release shunt trip

■ Closing release shunt trip

- Motor option
(*) Included with the motor option.

Double-function operating mechanism CS

■ Switch and earth switch functions

Dependent-operation opening and closing by lever.
■ Auxiliary contacts

- disconnector (2 O + 2 C) for units DM1-A, DM1-D, DM1-W, DM2,

DMVL-A, DMVL-D, CVM and CRM without VT,
\square disconnector $(2 O+3 C)$ and earthing switch $(1 O+1 C)$ for units
DM1-A, DM1-D, DM1-W, DM2, DMVL-A, DMVL-D, CVM and CRM without VT, \square disconnector $(1 \mathrm{O}+2 \mathrm{C})$ for units CM, CM2, TM, DM1-A, DM1-D, DM2,
DMVL-A, DMVL-D, CVM and CRM with VT.
■ Mechanical indications
Fuses blown in units CM, CM2 and TM.

Single-function operating mechanism CC

- Earthing switch function

Independent-operation opening and closing by lever.
Operating energy is provided by a compressed spring which, when released, provokes opening or closing of the contacts.

- Auxiliary contacts

Earthing switch ($\mathrm{O}+1 \mathrm{C}$).

Cable-connection from below for 24 kV
Cable positions

DM1-A, DM1-S, DMVL-A DM1-W (630 A)

DMV-A, DMV-S (630 A)

GAM2

GAM

Cableconnection height measured from floor (mm)

	630 A	1250 A
IM, NSM-cables, NSM-busbars	945	
SM	945	945
IMC	400	
PM, QM	400	
QMC	400	
CRM, CVM	430	
DM1-A	430	320
DMVL-A	430	
DMV-S	320	
DM1-W	370	320
GAM2	760	
GAM	470	620
DMV-A	320	313
DM1-S	543	

$X=330: 1$ single-core cable
X=268 : 2 single-core cables
X=299 : Three core cable

Dimensions and weights

Unit type	Height (mm)	Width (mm)	Depth (mm)	Weight (kg)
IM, IMB	1600 (1)	375/500	940	120/130
IMC	$1600{ }^{(1)}$	500	940	200
PM, QM, QMB	$1600{ }^{(1)}$	375/500	940	130/150
QMC	$1600{ }^{(1)}$	625	940	180
CRM, CVM	2050	750	940	390
DM1-A, DM1-D, DM1-W, DM2, DMVL-A, DMVL-D	$1600{ }^{(1)}$	750	1220	400
DM1-S	$1600{ }^{(1)}$	750	1220	340
DMV-A, DMV-D	$1695{ }^{(1)}$	625	940	340
DMV-S	$1600{ }^{(1)}$	625	940	260
CM	$1600{ }^{(1)}$	375	940	190
CM2	$1600{ }^{(1)}$	500	940	210
GBC-A, GBC-B	1600	750	1020	290
NSM-cables, NSM-busbars	2050	750	940	260
GIM	1600	125	840	30
GEM ${ }^{(2)}$	1600	125	920/1060 ${ }^{(2)}$	30/35 ${ }^{(2)}$
GBM	1600	375	940	120
GAM2	1600	375	940	120
GAM	1600	500	1020	160
SM	$1600{ }^{(1)}$	375/500 ${ }^{(3)}$	940	120/150 ${ }^{(3)}$
TM	1600	375	940	200
DM1-A, DM1-D, DM1-W, DM1-Z (1250 A)	1600	750	1220	420

Add to height:

(1) 450 mm for low-voltage enclosures for control/monitoring and protection functions.

To ensure uniform presentation, all units (except GIM and GEM) may be equipped with low-voltage enclosures.
(2) depending on the busbar configuration in the VM6 unit, two types of extension units may be used:

- to extend a VM6 DM12 or DM23 unit, use an extension unit with a depth of 1060 mm - for all other VM6 units, a depth of 920 mm is required.
(3) for the 1250 A unit.

Ground preparation

Units may be installed on ordinary concrete ground, with or without trenches depending on the type and cross-section of cables.

Fixing of units

With each other

The units are simply bolted together to form the MV switchboard (bolts supplied). Busbar connections are made using a torque wrench set to 28 mN .

On the ground

■ for switchboards comprising up to three units, the four corners of the switchboard must be secured to the ground with using:

- M8 bolts (not supplied) screwed into nuts set into the ground using a sealing pistol, \square screw rods grouted into the ground.
■ for switchboards comprising more than three units, each unit may be fixed as necessary.
- position of fixing holes b depends on the width a of units:

$\mathbf{a}(\mathrm{mm})$	125	375	500	625	750
$\mathbf{b}(\mathrm{~mm})$	95	345	470	595	720

GIM

圜

EMB

GBC-A, GBC-B

