Low Voltage
Catalogue| 2016

Masterpact NT and NW

LV power circuit breakers and switch-disconnectors

Green Premium ${ }^{\text {m }}$

Endorsing eco-friendly products in the industry

Green Premium ${ }^{\prime \prime}$

Product
Green Premium is the only label that allows you to effectively develop and promote an environmental policy whilst preserving your business efficiency. This ecolabel guarantees compliance with up-to-date environmental regulations, but it does more than this.

Over 75\% of Schneider Electric manufactured products have been awarded the Green Premium ecolabel

Discover what we mean by green

Check your products!

Schneider Electric's Green Premium ecolabel is

 committed to offering transparency, by disclosing extensive and reliable information related to the environmental impact of its products:
RoHS

Schneider Electric products are subject to RoHS requirements at a worldwide level, even for the many products that are not required to comply with the terms of the regulation. Compliance certificates are available for products that fulfil the criteria of this European initiative, which aims to eliminate hazardous substances.

REACh

Schneider Electric applies the strict REACh regulation on its products at a worldwide level, and discloses extensive information concerning the presence of SVHC (Substances of Very High Concern) in all of these products.

PEP: Product Environmental Profile

Schneider Electric publishes complete set of environmental data, including carbon footprint and energy consumption data for each of the lifecycle phases on all of its products, in compliance with the ISO 14025 PEP ecopassport program. PEP is especially useful for monitoring, controlling, saving energy, and/or reducing carbon emissions.

Eoll: End of Life Instructions

Available at the click of a button, these instructions provide:

- Recyclability rates for Schneider Electric products.
- Guidance to mitigate personnel hazards during the dismantling of products and before recycling operations.
- Parts identification for recycling or for selective treatment, to mitigate environmental hazards/ incompatibility with standard recycling processes.

Masterpact NT and NW

The standard for power circuit breakers around the world.

Over the years, other major manufacturers have tried to keep up by developing products incorporating Masterpact's most innovative features, including the breaking principle, modular design and the use of composite materials.

In addition to the traditional features of power circuit breakers (withdrawability, discrimination and low maintenance), Masterpact NT and NW ranges offer built-in communications and metering functions, all in optimised frame sizes.

Masterpact NT and NW incorporate the latest technology to enhance both performance and safety. Easy to install, with user-friendly, intuitive operation and environment-friendly design, Masterpact NT and NW are, quite simply, circuit breakers of their time.

Covering all your applications

Masterpact meets the needs of all types of LV electrical distribution networks.

$\sqrt{10}$

Data Centres and Networks

Industry

> Mining and minerals
$>$ Automotive
> Food and beverage
> Chemical industry

\#

Energy and

 Infrastructures> Airports
$>$ Oil and gas
> Water
> Electrical energy
> Marine

An answer to specific applications

$>1000 \mathrm{~V}$ for mining applications
$>$ Direct current networks
$>$ Corrosion protection
$>$ Switch-disconnectors and earthing switches
$>$ Automatic transfer switching equipment (ATSE) for emergency power systems
> High electrical endurance applications: Masterpact NT H2 is a high performance device offering high breaking capacity (Icu: $50 \mathrm{kA} / 480 \mathrm{~V}$) and a high level of discrimination, all in a small volume.

Whenever high short circuit is involved

Masterpact UR is a low voltage ultra rapid opening circuit breaker. Its fault detection rate and its reaction speed mean that it will stop a short circuit from developing. As a result, this is the key component in very high power installations equipped with a number of power sources connected in parallel.

Masterpact UR truly comes into its own when short circuit currents can reach very high levels and when continuity of service is a must: offshore installations, cement plants, petrochemical industry. It is also especially suited to electrical installations on board merchant.

All standards

Masterpact is compliant with international standards IEC 60947-1 and 2, IEC 68230 for type 2 tropicalisation, UL489, ANSI, UL1066, CCC and GOST.

Two families and three frame sizes

The range of power circuit breakers includes two families:
> Masterpact NT, the world's smallest true power circuit breaker, with ratings from 630 to 1600 A
> Masterpact NW, in two frame sizes, one from 800 to 4000 A and the other from 4000 to 6300 A .

5 performance levels

> N1 - for standard applications with low short-circuit levels.
$>\mathrm{H} 1$ - for industrial sites with high short-circuit levels or installations with two parallel-connected transformers.
$>\mathrm{H} 2$ - high-performance for heavy industry where very high short-circuits can occur.
$>\mathrm{H} 3$ - for incoming devices supplying critical applications requiring both high performance and a high level of discrimination.
$>$ L1 - for high current-limiting capability and a discrimination level (37 kA) as yet unequalled by any other circuit breaker of its type; intended for the protection of cable-type feeders or to raise the performance level of a switchboard when the transformer power rating is increased.

Optimised volumes and ease of installation

Aiming at standardising electrical switchboards at a time when installations are increasingly complex, Masterpact provides an unequalled simplicity, both concerning choice and installation.

The smallest circuit breaker in the world

Masterpact NT innovates by offering all the performance of a power circuit breaker in an extremely small volume. The 70 mm pole pitch means a three-pole drawout circuit breaker can be installed in a switchboard section 400 mm wide and 400 mm deep.

Maximum security

The arc chutes absorb the energy released during breaking, thus limiting the stresses exerted on the installation. They filter and cool the gases produced, reducing effects perceptible from the outside.

Optimised volumes

Up to 4000 A, Masterpact NW circuit breakers are all the same size, the same as the old M08 to 32 range.
From 4000 to 6300 A, there is just one size.

More than

patents are used to design Masterpact

Retrofit solutions

$>$ Special connections terminals are available to replace a fixed or a drawout Masterpact M08 to 32 with a Masterpact NW, without modifying the busbars or the door cut-out.
$>$ "Plug and Play" retrofit solution: this solution enables retrofitting of Masterpact M units with considerably reducing on-site intervention time and getting the performance of last generation device.

Standardisation of the switchboard

With optimised sizes, the Masterpact NT and NW ranges simplify the design of switchboards and standardise the installation of devices:
$>$ a single connection layout for Masterpact NT
$>$ three connection layouts for Masterpact NW:

- one from 800 to 3200 A
- one for 4000 A
- one up to 6300 A
$>$ horizontal or vertical rear connections can be modified on-site by turning the connectors 90° or they can even be replaced by front connection terminals
> identical connection terminals for the fixed or draw-out version for each rating (Masterpact NW)
$>$ front connection requires little space because the connectors not increase the depth of the device.

Practical installation solutions

The Masterpact NW range further improves the installation solutions that have built the success of its predecessors: $>$ incoming connection to top or bottom terminals
$>$ no safety clearance required
> connection:

- horizontal or vertical rear connection
- front connection with minimum extra space
- mixed front and rear connections

115 mm pole pitch on all versions
$>$ no derating up to $55^{\circ} \mathrm{C}$ and 4000 A .

Compliance with environmental requirements

The materials used for Masterpact are not potentially dangerous to the environment and are marked to facilitate sorting for recycling.

Production facilities are non-polluting in compliance with the ISO 14001 standard.

Energy management has never been simpler

Simple-to-install Smart Panels connect your building to real savings in 3 steps

[^0]

3 SAVE

On-site real time monitoring and control

On a touch screen display connected to Ethernet

- shows essential electrical information and alarms concerning the electrical network,
- allows control (open, close, reset...) of various equipments.
This touch screen is well appreciated for real time value checking and control, directly on the front panel of the main switchboard.

On a PC display with common browser

- shows monitoring web pages hosted into the local Ethernet interface,
- alarm events generate automatic email notifications,
- allows control (open, close, reset...) of various equipments.
Data displayed on graphics or recorded into files are of a great interest for optimizing the use of energy in the building.
As an example, they definitely help validating the change of temperature settings, time scheduling in a Building Management System or other automated devices.

1 MEASURE

"Smart Panels" mean visible information

Grouping most of the electrical protection, command and metering components, the switchboards are now significant sources of data locally displayed and sent via communication networks.

2 CONNECT

... and ready to be linked to expertise
Smart Panels use reliable, simple to install and use displays, and Ethernet and Modbus interfaces on the Enerlin'X communication system.
Information is safely transmitted through the most efficient networks:

- Modbus SL inside switchboards, between components
- Ethernet, on cable or WiFi, inside the building and connecting switchboards, computers,
- Ethernet on DSL or GPRS, for access to on-line services by Schneider Electric.
Energy experts, wherever they are, are now able to provide advises based on permanently updated data of the building.

On-line Energy Management services

StruXureWare Energy Operation

automates data collection via an open, scalable, and secure energy management information system.

With the help of the Schneider Electric energy management services team, data is then turned into actionable information to enable customers to understand their facilities' performance on an ongoing basis.
Energy Operation leverages companies' current investments in their existing systems, and can be used to communicate advanced results and performance to a broad audience for a shared understanding throughout an organization.

Keep your Masterpact NT/NW features year after year by

 performing requested maintenance
Abstract

To maintain Masterpact's operating and safety characteristics from the beginning to the end of its service life, Schneider Electric requests that systematic checks and periodic maintenance be carried out by qualified personnel, as indicated in the "Masterpact Maintenance

\section*{Guide".}

The Maintenance Guide defines 3 types of maintenance:
$>$ the corrective maintenance repairs a system in view of fulfilling a required function $>$ the preventive maintenance consists in carrying out, at predetermined intervals, checks intended to reduce the probability of a failure or deterioration in the operation of a system $>$ the predictive maintenance, based on the recording and analysis of system parameters, is the means to detect drift from the initial state and significant trends. Using predictive maintenance makes possible to anticipate on the corrective action required to ensure equipment safety and continuity of service, and plan the action for the most convenient time.

The Maintenance Guide is available on Internet (www.schneider-electric.com) and provides detailed information on: $>$ the types of maintenance required, depending on the criticality of the protected circuit
$>$ the risks involved if the component ceases to operate correctly
$>$ what is understood by the terms normal, improved and severe environment and operating conditions
$>$ the periodic preventive maintenance operations that should be carried out under normal environment and operating conditions as well as the level of competence required for the operations
$>$ the environment and operating conditions that accelerate device ageing.

General contents

Presentation

Functions and characteristics A-1

Dimensions and connections
C-1

Electrical diagrams


```
This overview describes all the functions offered
by Masterpact NT and NW devices.
The two product families have identical functions
implemented using the same or different
components depending on the case.
```

Circuit breakers and switch-disconnectors

- Ratings:
- Masterpact NT 630 to 1600 A
- Masterpact NW 800 to 6300 A.
- Circuit breakers type N1, H1, H2, H3, L1.

■ Switch-disconnectors type NA, HA, HF, HH.

- 3 or 4 poles.
- Fixed or drawout versions.
- Option with neutral on the right.
- Protection derating.

Micrologic control units

Ammeter A and Energy E

- 2.0 basic protection
- 5.0 selective protection

■ 6.0 selective + earth-fault protection
■ $7.0{ }^{(1)}$ selective + earth-leakage protection

Power meter \mathbf{P}

- 5.0 selective protection

■ 6.0 selective + earth-fault protection

- 7.0 selective + earth-leakage protection

Harmonic meter H

- 5.0 selective protection
- 6.0 selective + earth-fault protection

■ 7.0 selective + earth-leakage protection
■ External sensor for earth-fault protection.

- Rectangular sensor for earth-leakage protection

■ Setting options (long-time rating plug):

- low setting 0.4 to $0.8 \times \mathrm{Ir}$
\square high setting 0.8 to $1 \times \mathrm{lr}$
\square without long-time protection.
- External AD power-supply module.
- Battery module.
(1) Only for ammeter A.

Power meter functions

> > page A-20

Masterpact equipped with Micrologic 2 / 5 / 6 / 7 trip units offer type A (ammeter) or E (energy) metering functions as well as communication. Using Micrologic sensors and intelligence, Masterpact provides access to measurements of all the main electrical parameters on the built-in screen, on a dedicated FDM display unit or via the communication system.

Operating assistance functions

page A-22
Integration of measurement functions provides operators with operating assistance functions including alarms tripped by user-selected measurement values, time-stamped event tables and histories, and maintenance indicators.

Switchboard display unit functions

> page A-24
The main measurements can be read on the built-in screen of Micrologic $2 / 5 / 6 / 7$ trip units. They can also be displayed on the FDM switchboard display unit along with pop-up windows signalling the main alarms.

Communication

page A-32

- COM option in Masterpact.

■ Masterpact in a communication network.
■ IFM: Modbus interface module.

- IFE: Ethernet interface module.
- I/O application module.
- Electrical Asset Manager.

Ecodial

Ecodial software is dedicated to LV electrical installation calculation in accordance with the IEC60364 international standard or national standards.

This $4^{\text {th }}$ generation, "Ecodial Advance Calculation 4", offers a new ergonomic and new features:

- operating mode that allows easy calculation in case of installation with different type of sources (parallel transformers, back-up generators...)
- discrimination analysis associating curves checking and discrimination tables
- direct access to protection settings including residual current protections
- easy selection of alternate solutions or manual selection of a product.

Circuit breakers and switch-disconnectors NT06 to NT16 and NW08 to NW63 A-2
Circuit breakers and switch-disconnectors characteristics
NT06 to NT16 A-4
NW08 to NW63 A-6
Micrologic control units
Overview of functions A-8
Micrologic A "ammeter" A-10
Micrologic E "energy" A-12
Micrologic P "power" A-14
Micrologic H "harmonics" A-18
Power Meter functions
Micrologic A/E/P/H control unit with COM option (BCM ULP) and COM Ethernet gateway A-20
Operating-assistance functions
Micrologic A/E/P/H control unit with COM option (BCM ULP) A-22
Switchboard-display functions A-24
Micrologic A/E/P/H control unit with COM Ethernet gateway A-26
Micrologic control units
Accessories and test equipment A-28
Enerlin'X communication system
Products overview A-30
Communication
Communication wiring system A-32
Overview of functions A-33
COM option in Masterpact A-34
Communication architecture A-35
IFE Ethernet interface A-36
IFM Modbus communication interface A-38
I/O application module A-40
Connection of the IFE to a fixed or drawout Masterpact NT/NW A-42
Electrical Asset Manager Configuration Engineering tool A-44
Mounting Versions and Connections
Overview of solutions A-46
Accessories A-47
Locking
On the device A-50
On the chassis A-51
Indication contacts A-52
Remote operation
Remote ON / OFF A-54
Remote tripping A-57
Accessories A-58
Source-changeover systems
Presentation A-59
Interlocking of devices
Mechanical interlocking A-60
Electrical interlocking
IVE unit A-62
Controller selection A-63
Standard configuration A-64
Masterpact NW with corrosion protection 800-4000 A A-65
Earthing switch Masterpact A-67

[^1]

Functions and characteristics

Circuit breakers
 and switch-disconnectors
 NT06 to NT1 6 and NW08 to NW63

NT and NW selection criteria

	Masterpact NT			Masterpact NW	
	Standard applications			Standard applications	
	NT06, NT08, NT10, NT H1	$\begin{aligned} & \text { 12, NT16 } \\ & \text { \| } \mathrm{H} 2 \end{aligned}$	NT06, NT08, NT10 L1	NW08...NW16 N1	NW08...NW40 H1
Type of application	Standard applications with low short-circuit currents	Applications with medium-level short-circuit currents	Limiting circuit breaker for protection of cable-type feeders or upgraded transformer ratings	Standard applications with low short-circuit currents	Circuit breaker for industrial sites with high short-circuit currents
Icu/lcs at 440 V	42 kA	50 kA	130 kA	42 kA	65 kA
Icu/lcs at 1000 V	-	-	-	-	-
Icu/lcs at 500 V DC L/R $<15 \mathrm{~ms}$	-	-	-	-	-
Position of neutral	Left	Left	Left	Left	Left or right
Fixed	F	F	F	F	F
Drawout	D	D	D	D	D
Switch-disconnector version	Yes	No	No	Yes	Yes
Front connection	Yes	Yes	Yes	Yes	Yes up to 3200 A
Rear connection	Yes	Yes	Yes	Yes	Yes
Type of Micrologic control unit	A, E, P, H				

Masterpact NT06 to NT16 installation characteristics

Circu	aker	NT06, NT08, NT10			NT12, NT16	
Type		H1	H2	L1	H1	H2
Connection						
Drawout	FC	\square	\square	-	\square	\square
	RC	\square	\square	\square	\square	\square
Fixed	FC	\square	\square	\square	\square	\square
	RC	\square	\square	-	\square	\square
Dimensions (mm) H x W x D						
Drawout	3 P	$322 \times 288 \times 277$				
	4 P	$322 \times 358 \times 277$				
Fixed	3P	$301 \times 276 \times 196$				
	4P	$301 \times 346 \times 196$				
Weight (kg) (approximate)						
Drawout	3P/4P	30/39				
Fixed	3P/4P	14/18				

Masterpact NW08 to NW63 installation characteristics

Circui	aker	NW08, NW10, NW12, NW16					NW20				
Type		N1	H1	H2	L1	H10	H1	H2	H3	L1	H10
Connection											
Drawout	FC	\square	\square	\square	-	-	\square	\square	\square	-	-
	RC	\square	\square	\square	-	-	\square	\square	\square	\square	\square
Fixed	FC	\square	\square	\square	-	-	\square	\square	-	-	-
	RC	\square	\square	\square	-	-	\square	\square	-	-	-
Dimensions (mm) H x W x D											
Drawout	3 P	$439 \times 441 \times 395$									
	4P	$439 \times 556 \times 395$									
Fixed	3P	$352 \times 422 \times 297$									
	4P	$352 \times 537 \times 297$									
Weight (kg) (approximate)											
Drawout	3P/4P	90/120									
Fixed	3P/4P	50/65									

(1) Except 4000 .

			Special applications				
H2	H3	L1	NW H10	NW H2 with corrosion protection	NW10...NW40 N DC	H DC	NW earthing switch
High-performance circuit breaker for heavy industry with high short-circuit currents	Incoming device with very high performance for critical applications	Limiting circuit breaker for protection of cable-type feeders or upgraded transformer ratings	1000 V systems, e.g. mines and wind power	Environments with high sulphur contents	DC system	DC system	Installation earthing
100 kA	150 kA	150 kA	-	100 kA	-	-	-
-	-	-	50 kA	-	-	-	-
-	-	-	-	-	35 kA	85 kA	-
Left or right	Left	Left	Left	Left	-	-	-
F	-	-	-	-	F	F	-
D	D	D	D	D	D	D	D
Yes	Yes	No	Yes	Yes	Yes	Yes	Yes
Yes up to 3200 A	Yes up to 3200 A	Yes up to 3200 A	No	Yes up to 3200 A	No	No	Yes up to 3200 A
Yes							
A, E, P, H	A, E, P, H	A, E, P, H	A, consult us for P and H	A, E, P, H	DC Micrologic	DC Micrologic	-

$479 \times 786 \times 395$
$479 \times 1016 \times 395$
$352 \times 767 \times 297$
$352 \times 997 \times 297$

Functions

 and characteristicsCircuit breakers
and switch-disconnectors characteristics
NT06 to NT16

(1) $50^{\circ} \mathrm{C}$: rear vertical connected. Refer to temperature derating tables for other connection types.
(2) See the current-limiting curves in the "additional
characteristics" section.
(3) SELLIM system.
(4) Available for 480 V NEMA.
(5) Suitable for motor control (direct-on-line starting).

| Common characteristics | | |
| :--- | :--- | :--- | :--- |
| Cumber of poles $3 / 4$
 Rated insulation voltage (V) Ui 1000
 Impulse withstand voltage (kV) Uimp 12
 Rated operational voltage $(\mathrm{VAC} 50 / 60 \mathrm{~Hz})$ Ue 690
 Suitability for isolation IEC $60947-2$
 Degree of pollution IEC $60664-1$ 3 | | |

Basic circuit breaker

Circuit breaker as per IEC 60947-2
Rated current (A) In at $40^{\circ} \mathrm{C} / 50^{\circ} \mathrm{C}$ (1)

Rating of 4th pole (A)
Sensor ratings (A)
Type of circuit breaker

Ultimate breaking capacity (kA rms)	Icu	$220 / 415 \mathrm{~V}$
V AC 50/60 Hz		440 V
		525 V
		690 V
Rated service breaking capacity (kA rms)	Ics	$\%$ Icu
Utilisation category		
Rated short-time withstand current (kA rms)	Icw	0.5 s
V AC 50/60 Hz		1 s
		3 s
Integrated instantaneous protection (kA peak $\pm 10 \%$)		
Rated making capacity (kA peak)	Icm	$220 / 415 \mathrm{~V}$
V AC 50/60 Hz		440 V
		525 V
		690 V

Break time (ms) between tripping order and arc extinction
Closing time (ms)

Circuit breaker as per NEMA AB1	
Breaking capacity (kA)	240 V
V AC $50 / 60 \mathrm{~Hz}$	480 V

Switch-disconnector as per IEC 60947-3 and Annex A		
Type of switch-disconnector		
Rated making capacity (kA peak)	Icm	220 V
AC23A/AC3 category V AC 50/60 Hz		440 V
		$525 / 690 \mathrm{~V}$
	Icw	0.5 s
Rated short-time withstand current (kA rms)	1 s	
AC23A/AC3 category V AC 50/60 Hz		3 s

Mechanical and electrical durability as per IEC 60947-2/3 at In/le

Durability Mechanical without maintenance

C/O cycles $\times 1000$
Type of circuit breaker

Rated current		$\ln (\mathrm{A})$
C/O cycles $\times 1000$ Electrical	without maintenance	$440 \mathrm{~V}^{(4)}$
IEC 60947-2		690 V
Type of circuit breaker or switch-disconnector		
Rated operationnal current	le (A)	AC23A
C/O cycles x 1000 Electrical	without maintenance	$440 \mathrm{~V}^{(4)}$
IEC 60947-3		690 V
Type of circuit breaker or switch-disconnector		
Rated operationnal current	le (A)	AC3 ${ }^{(5)}$
Motor power		380/415 V (kW)
		440 V (kW)
C/O cycles $\times 1000$ Electrical IEC 60947-3 Annex M/IEC 60947-4-1	without maintenance	$440 \mathrm{~V}^{(4)}$
		690 V

Sensor selection

Sensor rating (A)	$250^{(1)}$	400	630	800	1000	1250	1600
Ir threshold setting (A)	100 to 250	160 to 400	250 to 630	320 to 800	400 to 1000	500 to 1250	640 to 1600

(1) For circuit breaker NT02, please consult us.

NT06			NT08	NT10	NT12		NT16
$\begin{aligned} & 630 \\ & 630 \end{aligned}$			800	1000	1250		1600
			800	1000	1250		1600
400 to 630			400 to 800	400 to 1000	630	250	800 to 1600
H1	H2	L1 ${ }^{(2)}$			H1	H2	
42	50	150			42	50	
42	50	130			42	50	
42	42	100			42	42	
42	42	25			42	42	
100 \%					100 \%		
B	B	A			B B		
42	42	10			4242		
42	42	-			$42 \quad 42$		
24	20	-			$24 \quad 20$		
-	90	$10 \times \ln { }^{(3)}$			- 90		
88	105	330			88105		
88	105	286			88105		
88	88	220			$88 \quad 88$		
88	88	52			88		
25	25	9			$25 \quad 25$		
< 50					< 50		
42	50	150			42	50	
42	50	100			42	50	
42	42	25			42	42	

| HA | HA |
| :--- | :--- | :--- |
| 75 | 75 |
| 75 | 75 |
| 75 | 75 |
| 36 | 36 |
| 36 | 36 |
| 20 | 20 |
| 36 | 36 |

12.5												
H1	H2	L1	H1	H2	L1	H1	H2	L1	H1	H2	H1	H2
630			800			1000			125		160	
6	6	3	6	6	3	6	6	3	6	6	6	6
3	3	2	3	3	2	3	3	2	3	3	3	3
H1/H2/HA												
630			800			1000			125		160	
6			6			$\begin{array}{\|l\|} \hline 6 \\ 3 \end{array}$			6		3	
H1/H2/HA												
500			630			800			100		100	
$\begin{aligned} & \leqslant 250 \\ & \leqslant 300 \end{aligned}$			250 300			335 t			450		450	

6

Functions
and characteristics

(1) $50^{\circ} \mathrm{C}$: rear vertical connected. Refer to temperature derating tables for other connection types.
(2) See the current-limiting curves in the "additional characteristics" section.
(3) Equipped with a trip unit with a making current of 90 kA peak.
(4) External protection must comply with permissible thermal constraints of the circuit breaker (please consult us).
No fault-trip indication by the SDE or the reset button.
(5) Available for 480 V NEMA.
(6) Suitable for motor control (direct-on-line starting).
(7) Equipped with an instantaneous making over-current protection of 187 kA peak.
(8) Icu 65 kA , Icw $65 \mathrm{kA} / 1$ s available from October 2016, 50 kA before October - please contact us to confirm the date. (9) Icm 143 kA peak available from October 2016, 105 kA peak before October - please contact us to confirm the date. (10) Icu 65 kA, Icw 65 kA/1 s available from October 2016, 55 kA before October - please contact us to confirm the date. (11) Icm 143 kA peak available from October 2016, 121 kA peak before October - please contact us to confirm the date. a) A-6 \quad Schneider

Circuit breakers and switch-disconnectors characteristics
NW08 to NW63

Sensor selection
Sensor rating (A)
Ir threshold setting(A)
$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l}\hline 250^{(1)} & 400 & 630 & 800 & 1000 & 1250 & 1600 & 2000 & 2500 & 3200 & 4000 & 5000 & 6300 \\ \begin{array}{l}100 \\ \text { to } 250\end{array} & \begin{array}{l}160 \\ \text { to } 400\end{array} & 250 & 320 & 400 & 500 & 630 & 800 & 1000 & 1250 & 1600 & 2000 & 2500 \\ \text { to } 630 & \text { to } 800 & \begin{array}{l}\text { to } 1000\end{array} & \begin{array}{l}\text { to } 1250\end{array} & \begin{array}{l}\text { to } 1600\end{array} & \begin{array}{l}\text { to } 2000\end{array} \\ \text { to } 2500\end{array}\right)$
(1) For circuit breaker NW02, please consult us.

	NW08	NW10	NW12 NW16	NW20	NW25 NW32 NW40	03

$\begin{array}{\|l\|} \hline 800 \\ 800 \end{array}$	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	$\begin{aligned} & 1250 \\ & 1250 \end{aligned}$	$\begin{array}{\|l\|l\|} 1600 \\ 1600 \\ \hline \end{array}$		$\begin{array}{\|l\|l} 2000 \\ 2000 \end{array}$						$\begin{array}{\|l\|l} 2500 \\ 2500 \end{array}$	$\begin{array}{\|l\|l} 3200 \\ 3200 \end{array}$	$\begin{array}{\|l} 4000 \\ 4000 \\ \hline \end{array}$		$\begin{array}{\|l\|} 4000 \\ 4000 \end{array}$	$\begin{aligned} & 5000 \\ & 5000 \end{aligned}$	$\begin{array}{r} 6300 \\ 6300 \\ \hline \end{array}$	
$\begin{aligned} & 400 \\ & \text { to } 800 \end{aligned}$	$\begin{aligned} & 400 \\ & \text { to } 1000 \end{aligned}$	$\begin{array}{\|l\|} \hline 630 \\ \text { to } 1250 \end{array}$	800 to 1600		1000 to 2000						$\begin{array}{\|l\|} \hline 1250 \\ \text { to } 2500 \end{array}$	$\begin{array}{\|l\|} \hline 1600 \\ \text { to } 3200 \end{array}$	2000	4000	$\begin{aligned} & \hline 2000 \\ & \text { to } 4000 \end{aligned}$	$\begin{aligned} & 2500 \\ & \text { to } 5000 \end{aligned}$	$\begin{aligned} & 3200 \\ & \text { to } 6300 \end{aligned}$	
N1	H1	H2	L1 ${ }^{(2)}$	H10	N1	H1	H2	H3	L1 ${ }^{(2)}$	H10	H1	H2	H3	H10	H1	H2		
42	65	100	150	-	42	65	100	150	150	-	65	100	150	-	100	150		
42	65	85	130	-	42	65	85	130	130	-	65	85	130	-	100	130		
42	65	85	100	-	42	65	85	100	100	-	65	85	100	-	100	100		
-	-	-	-	50	-	-	-	-	-	50	-	-	-	50	-	-		
100 \%					100%						100%				100 \%			
B					B						B				B			
42	65	85	30	50	42	65	85	65	30	50	65	85	65	50	100	100		
22	36	50	30	50	22	36	75	65	30	50	65	75	65	50	100	100		
-	-	190	80	-	-	-	190	150	80	-	-	190	150	-	-	270		
88	143	220	330	-	88	143	220	330	330	-	143	220	330	-	220	330		
88	143	187	286	-	88	143	187	286	286	-	143	187	286	-	220	286		
88	143	187	220	-	88	143	187	220	220	-	143	187	220	-	220	220		
-	-	- 25	-	105	-	-	-	-	-	105	-	-	-	105	-	-		
25	25		10	25	25	25	25	25	10	25	25	25	25	25	25<80			
< 70					$<70<70$						< 70							
	65 100 65 85		$\begin{aligned} & 150 \\ & 100 \end{aligned}$		$\begin{aligned} & 42 \\ & 42 \end{aligned}$													
42				$\begin{aligned} & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & 100 \\ & 85 \end{aligned}$	$\begin{aligned} & 150 \\ & 100 \end{aligned}$	$\begin{aligned} & 150 \\ & 100 \end{aligned}$		$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 100 \\ & 85 \end{aligned}$	$\begin{aligned} & 150 \\ & 100 \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 150 \\ & 100 \end{aligned}$			
42																		
	$\begin{array}{ll}\text { HA } & \text { HF } \\ 65 \\ \\ \\ \text { (8) } & 85\end{array}$					HA	HF ${ }^{(3)}$				HA	$\mathrm{HF}^{(3)}$			HA	HH ${ }^{(7)}$		
						$65{ }^{(8)}$	85				$65{ }^{(10)}$	85			85	100		
	100 \%				100 \%						100 \%				100 \%	100 \%		
	$65{ }^{(8)}$	85					85				$65{ }^{(10)}$	85			85	100		
	36	50					75				55	75			85	100		
	- -				-		-				-	-			-	-		
	$143{ }^{(9)} 187$				$143{ }^{(9)} 187$						$143{ }^{(11)}$	187			187220			
NW08/NW10/NW12/NW16							NW20					NW25/NW32/NW40			NW40b/NW50/NW63			
NA	HA		HF		HA10		HA	HF			HA10	HA	HF	HA10	HA	HH		
88	$143{ }^{(9)}$		187		-		$143^{(9)}$		187		-	$143{ }^{(11)}$	187	-	187	220		
-	-		-		105						105	-	-	105	-	-		
42	$65{ }^{(8)}$36		$\begin{aligned} & 85 \\ & 50 \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \end{aligned}$		$\begin{aligned} & 65^{(8)} \\ & 36 \end{aligned}$	$\begin{aligned} & 85 \\ & 75 \end{aligned}$			50	$65{ }^{(10)}$	85	50	85	100100		
-				50			55			75	50	85						

Micrologic control units

Overview of functions

All Masterpact circuit breakers are equipped with a Micrologic control unit that can be changed on site. Control units are designed to protect Power circuits and loads. Alarms may be programmed for remote indications.
Measurements of current, voltage, frequency, power and power quality optimise continuity of service and energy management.

Dependability

Integration of protection functions in an ASIC electronic component used in all Micrologic control units guarantees a high degree of reliability and immunity to conducted or radiated disturbances.
On Micrologic A, E, P and H control units, advanced functions are managed by an independent microprocessor.

Accessories

Certain functions require the addition of Micrologic control unit accessories, described on page A-28.
The rules governing the various possible combinations can be found in the documentation accessible via the Products and services menu of the www.schneider-electric.com web site.

Micrologic name codes

2.0 E

X Y Z

X: type of protection

- 2 for basic protection
- 5 for selective protection
- 6 for selective + earth-fault protection

■ 7 for selective + earth-leakage protection.

Y: control-unit generation

Identification of the control-unit generation.
" 0 " signifies the first generation.

Z : type of measurement

- A for "ammeter"
- E for "energy"
- P for "power meter"
- H for "harmonic meter".

Current protection
Micrologic 2: basic protection

Micrologic 6: selective + earth-fault protection

Micrologic 7: selective + earth-leakage protection

Protection:

long time

+ short time
+ instantaneous
+ earth leakage up to 3200A

Functions and characteristics

Micrologic A control units protect power circuits. They also offer measurements, display, communication and current maximeters. Version 6 provides earth-fault protection, version 7 provides earth-leakage protection.

1 long-time threshold and tripping delay
2 overload alarm (LED) at 1,125 Ir
3 short-time pick-up and tripping delay
4 instantaneous pick-up
5 earth-leakage or earth-fault pick-up and tripping delay
6 earth-leakage or earth-fault test button
7 long-time rating plug screw
8 test connector
9 lamp test, reset and battery test
10 indication of tripping cause
11 digital display
12 three-phase bargraph and ammeter
13 navigation buttons

"Ammeter" measurements

Micrologic A control units measure the true (rms) value of currents.
They provide continuous current measurements from 0.2 to 1.2 In and are accurate to within 1.5% (including the sensors).
A digital LCD screen continuously displays the most heavily loaded phase (Imax) or displays the $\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 3, \mathrm{IN}, \mathrm{Ig}, \mathrm{I} \Delta \mathrm{n}$, stored-current (maximeter) and setting values by successively pressing the navigation button.
The optional external power supply makes it possible to display currents $<20 \%$ In. Below 0.1 In , measurements are not significant. Between 0.1 and 0.2 ln , accuracy changes linearly from 4% to 1.5%.

Communication option

In conjunction with the COM communication option, the control unit transmits the following:

- settings

■ all "ammeter" measurements

- tripping causes

■ maximeter readings.

Protection

Protection thresholds and delays are set using the adjustment dials.

Overload protection

True rms long-time protection.
Thermal memory: thermal image before and after tripping
Setting accuracy may be enhanced by limiting the setting range using a different long-time rating plug.
Overload protection can be cancelled using a specific LT rating plug "Off".

Short-circuit protection

Short-time (rms) and instantaneous protection.
Selection of $I^{2} t$ type (ON or OFF) for short-time delay.

Earth-fault protection

Residual or source ground return earth fault protection.
Selection of $\mathrm{I}^{2 t}$ type (ON or OFF) for delay.
Residual earth-leakage protection (Vigi).
Operation without an external power supply.
Ω Protected against nuisance tripping.
ก̃ DC-component withstand class A up to 10 A .

Neutral protection

On three-pole circuit breakers, neutral protection is not possible.
On four-pole circuit breakers, neutral protection may be set using a three-position switch: neutral unprotected (4P 3d), neutral protection at $0.5 \operatorname{lr}(4 P 3 d+N / 2)$, neutral protection at Ir (4P 4d).

Zone selective interlocking (ZSI)

A ZSI terminal block may be used to interconnect a number of control units to provide total discrimination for short-time and earth-fault protection, without a delay before tripping.

Overload alarm

A yellow alarm LED goes on when the current exceeds the long-time trip threshold.

Fault indications

LEDs indicate the type of fault:
■ overload (long-time protection Ir)
■ short-circuit (short-time Isd or instantaneous li protection)
■ earth fault or earth leakage (\lg or $I \Delta n$)

- internal fault (Ap).

Battery power

The fault indication LEDs remain on until the test/reset button is pressed. Under normal operating conditions, the battery supplying the LEDs has a service life of approximately 10 years.

Test

A mini test kit or a portable test kit may be connected to the test connector on the front to check circuit breaker operation. For Micrologic 6.0 A and 7.0 A control units, the operation of earth-fault or earth-leakage protection can be checked by pressing the test button located above the test connector.

Note: all current-based protection functions require no auxiliary source.
The test / reset button resets maximeters, clears the tripping indication and tests the battery.

Functions
 and characteristics

Micrologic control units

Micrologic E "energy"

Micrologic E control units protect power circuits. They also offer measurements, display, communication and current maximeters. Version 6 provides earth-fault protection.

1 long-time threshold and tripping delay
2 overload alarm (LED) at 1,125 Ir
3 short-time pick-up and tripping delay
4 instantaneous pick-up
5 earth-leakage or earth-fault pick-up and tripping delay
6 earth-leakage or earth-fault test button
7 long-time rating plug screw
8 test connector
9 lamp test, reset and battery test
10 indication of tripping cause
11 digital display
12 three-phase bargraph and ammeter
13 navigation button "quick View" (only with Micrologic E)
14 navigation button to view menu contents
15 navigation button to change menu
(1) Display on FDM only.

Note: Micrologic E control units come with a transparent lead-seal cover as standard.

"Energy meter" measurements

In addition to the ammeter measurements of Micrologic A
Micrologic E control units measure and display:

- current demand

■ voltages: phase to phase, phase to neutral, average ${ }^{(1)}$ and unbalanced ${ }^{(1)}$

- instantaneous power: P, Q, S
- power factor: PF

■ power demand: P demand
■ energy: Ep, Eq ${ }^{(1)}$, Es ${ }^{(1)}$.
Accuracy of active energy Ep is 2% (including the sensors). The range of measurement is the same as current with Micrologic A, depending of an external power supply module (24 V DC).

Communication option

In conjunction with the COM communication option, the control unit transmits the following:

- settings
- all "ammeter" and "energy" measurements

■ enable connection to FDM

- tripping causes
- maximeter / minimeter readings.

Protection

Protection thresholds and delays are set using the adjustment dials.

Overload protection

True rms long-time protection.
Thermal memory: thermal image before and after tripping.
Setting accuracy may be enhanced by limiting the setting range using a different long-time rating plug. Overload protection can be cancelled using a specific LT rating plug "Off".

Short-circuit protection

Short-time (rms) and instantaneous protection.
Selection of $I^{2 t}$ type (ON or OFF) for short-time delay.

Earth-fault protection

Source ground return earth fault protection.
Selection of $I^{2} t$ type (ON or OFF) for delay.

Neutral protection

On three-pole circuit breakers, neutral protection is not possible.
On four-pole circuit breakers, neutral protection may be set using a three-position switch: neutral unprotected (4P 3d), neutral protection at $0.5 \operatorname{lr}(4 \mathrm{P} 3 \mathrm{~d}+\mathrm{N} / 2)$, neutral protection at $\operatorname{Ir}(4 \mathrm{P} 4 \mathrm{~d})$.
Zone selective interlocking (ZSI)
A ZSI terminal block may be used to interconnect a number of control units to provide total discrimination for short-time and earth-fault protection, without a delay before tripping.

Overload alarm

A yellow alarm LED goes on when the current exceeds the long-time trip threshold.

M2C programmable contacts

The M2C (two contacts) programmable contacts may be used to signal envents (Ir, Isd, Alarm Ir, Alarm Ig, Ig). They can be programmed using the keypad on the Micrologic E control unit or remotely using the COM option (BCM ULP).

Fault indications

LEDs indicate the type of fault:
■ overload (long-time protection Ir)
■ short-circuit (short-time Isd or instantaneous li protection)

- earth fault (lg)
- internal fault (Ap).

Trip history

The trip history displays the list of the last 10 trips. For each trip, the following indications are recorded and displayed:
■ the tripping cause: Ir, Isd, li, Ig or Auto-protection (Ap) trips

- the date and time of the trip (requires communication option).

Battery power

The fault indication LEDs remain on until the test/reset button is pressed. Under normal operating conditions, the battery supplying the LEDs has a service life of approximately 10 years.

Test

A mini test kit or a portable test kit may be connected to the test connector on the front to check circuit breaker operation. For Micrologic 6.0 E control units, the operation of earth-fault or earth-leakage protection can be checked by pressing the test button located above the test connector.

Note: all current-based protection functions require no auxiliary source.
The test / reset button resets maximeters, clears the tripping indication and tests the battery.

Functions and characteristics

Micrologic control units
Micrologic P "power"

Micrologic P control units include all the functions offered by Micrologic A. In addition, they measure voltages and calculate power and energy values. They also offer new protection functions based on currents, voltages, frequency and power reinforce load protection in real time.

[^2]
Protection
 洷 + Protection settings

The adjustable protection functions are identical to those of Micrologic A (overloads, short-circuits, earth-fault and earth-leakage protection).

Fine adjustment

Within the range determined by the adjustment dial, fine adjustment of thresholds (to within one ampere) and time delays (to within one second) is possible on the keypad or remotely using the COM option (BCM ULP).

IDMTL (Inverse Definite Minimum Time lag) setting

Coordination with fuse-type or medium-voltage protection systems is optimised by adjusting the slope of the overload-protection curve. This setting also ensures better operation of this protection function with certain loads.

Neutral protection

On three-pole circuit breakers, neutral protection may be set using the keypad or remotely using the COM option (BCM ULP), to one of four positions: neutral unprotected (4P 3d), neutral protection at $0.5 \operatorname{lr}(4 \mathrm{P} 3 \mathrm{~d}+\mathrm{N} / 2)$, neutral protection at Ir (4 P 4 d) and neutral protection at $1.6 \mathrm{Ir}(4 \mathrm{P} 3 \mathrm{~d}+1.6 \mathrm{~N})$. Neutral protection at 1.6 Ir is used when the neutral conductor is twice the size of the phase conductors (major load imbalance, high level of third order harmonics).
On four-pole circuit breakers, neutral protection may be set using a three-position switch or the keypad: neutral unprotected (4P 3d), neutral protection at $0.5 \operatorname{Ir}(4 \mathrm{P} 3 \mathrm{~d}$ $+\mathrm{N} / 2$), neutral protection at $\operatorname{Ir}(4 \mathrm{P} 4 \mathrm{~d})$. Neutral protection produces no effect if the long-time curve is set to one of the IDMTL protection settings.

Programmable alarms and other protection

Depending on the thresholds and time delays set using the keypad or remotely using the COM option (BCM ULP), the Micrologic P control unit monitors currents and voltage, power, frequency and the phase sequence. Each threshold overrun is signalled remotely via the COM option (BCM ULP). Each threshold overrun may be combined with tripping (protection) or an indication carried out by an optional M2C or M6C programmable contact (alarm), or both (protection and alarm).

Load shedding and reconnection

Load shedding and reconnection parameters may be set according to the power or the current flowing through the circuit breaker. Load shedding is carried out by a supervisor via the COM option (BCM ULP) or by an M2C or M6C programmable contact.

M2C / M6C programmable contacts

The M2C (two contacts) and M6C (six contacts) auxiliary contacts may be used to signal threshold overruns or status changes. They can be programmed using the keypad on the Micrologic P control unit or remotely using the COM option (BCM ULP).

Communication option (COM)

The communication option may be used to:
■ remotely read and set parameters for the protection functions

- transmit all the calculated indicators and measurements
- signal the causes of tripping and alarms
- consult the history files and the maintenance-indicator register.
- maximeter reset.

An event log and a maintenance register, stored in control-unit memory but not available locally, may be accessed in addition via the COM option (BCM ULP).

Functions and characteristics

Micrologic control units
Micrologic P "power"

Default display.

Display of a voltage.

Display of a frequency.

Display of a demand power.

Display of a maximum current.

者

Logiciel PME.

Measurements

The Micrologic P control unit calculates in real time all the electrical values $(\mathrm{V}, \mathrm{A}, \mathrm{W}$, VAR, VA, Wh, VARh, VAh, Hz), power factors and $\cos \varphi$ factors.
The Micrologic P control unit also calculates demand current and demand power over an adjustable time period. Each measurement is associated with a minimeter and a maximeter.
In the event of tripping on a fault, the interrupted current is stored. The optional external power supply makes it possible to display the value with the circuit breaker open or not supplied.
Instantaneous values
The value displayed on the screen is refreshed every second.
Minimum and maximum values of measurements are stored in memory (minimeters and maximeters).

Currents					
1 rms	A		2		N
	A	E-fault			
1 max rms	A	1	2	3	N
	A	E-fault			
Voltages					
U rms	V	12	23	31	
V rms	V	1 N	2N	3N	
U average rms	V	(U12 +	+ U		
U unbalance	\%				
Power, energy					
P active, Q reactive, S apparent	W, Var, VA	Totals			
E active, E reactive, E apparent	Wh, VARh, VAh	Totals consumed - supplied Totals consumed Totals supplied			
Power factor	PF	Total			
Frequencies					
F	Hz				

Demand metering
The demand is calculated over a fixed or sliding time window that may be programmed from 5 to 60 minutes. According to the contract signed with the power supplier, an indicator associated with a load shedding function makes it possible to avoid or minimise the costs of overrunning the subscribed power. Maximum demand values are systematically stored and time stamped (maximeter).

Currents	A				
I demand	A	1	2	3	N
	A	E-fault		E-leakage	
Imax demand	A	1	2	3	N
		E-fault		E-leakage	
Power	W, Var, VA	Totals			
P, Q, S demand	W, Var, VA	Totals			
P, Q, S max demand					

Minimeters and maximeters
Only the current and power maximeters may be displayed on the screen.

Time-stamping

Time-stamping is activated as soon as time is set manually or by a supervisor.
No external power supply module is required (max. drift of 1 hour per year).

Reset

An individual reset, via the keypad or remotely, acts on alarms, minimum and maximum data, peak values, the counters and the indicators.
Additional measurements accessible with the COM option (BCM ULP)
Some measured or calculated values are only accessible with the COM
communication option:

- I peak $/ \sqrt{2}$, $\left(I_{1}+I_{2}+I_{3}\right) / 3$, I unbalance
- load level in \% Ir
- total power factor.

The maximeters and minimeters are available only via the COM option (BCM ULP) for use with a supervisor.

Additional info

Accuracy of measurements (including sensors):
■ voltage (V) 0.5%

- current (A) 1.5%
- frequency $(\mathrm{Hz}) 0.1 \%$
- power (W) and energy $(W h) 2 \%$.

Histories and maintenance indicators

 .The last ten trips and alarms are recorded in two separate history files that may be displayed on the screen:

- tripping history:
\square type of fault
\square date and time
\square values measured at the time of tripping (interrupted current, etc.)
■ alarm history:
- type of alarm
- date and time
\square values measured at the time of the alarm.
All the other events are recorded in a third history file which is only accessible through the communication network.
■ Event log history (only accessible through the communication network)
\square modifications to settings and parameters
\square counter resets
\square system faults
\square fallback position
\square thermal self-protection
- loss of time
\square overrun of wear indicators
\square test-kit connections
\square etc.
Note: all the events are time stampled: time-stamping is activated as soon as time is set manually or by a supervisor. No external power supply module is required (max. drift of 1 hour per year).

Maintenance indicators with COM option (BCM ULP)

A number of maintenance indicators may be called up on the screen to better plan for device maintenance:

- contact wear

■ operation counter:

- cumulative total
\square total since last reset.
Additional maintenance indicators are also available through the COM network, and can be used as an aid in troubleshooting:
■ highest current measured
- number of test-kit connections

■ number of trips in operating mode and in test mode.

Additional technical characteristics

Safety

Measurement functions are independent of the protection functions.
The high-accuracy measurement module operates independently of the protection module.
Simplicity and multi-language
Navigation from one display to another is intuitive. The six buttons on the keypad provide access to the menus and easy selection of values. When the setting cover is closed, the keypad may no longer be used to access the protection settings, but still provides access to the displays for measurements, histories, indicators, etc.
Micrologic is also multi-language, including the following languages: English, Spanish, Portuguese, Russian, Chinese, French, German..

Intelligent measurement

Measurement-calculation mode:
■ energies are calculated on the basis of the instantaneous power values, in two manners:
\square the traditional mode where only positive (consumed) energies are considered \square the signed mode where the positive (consumed) and negative (supplied) energies are considered separately
■ measurement functions implement the new "zero blind time" concept which consists in continuously measuring signals at a high sampling rate. The traditional "blind window" used to process samples no longer exists. This method ensures accurate energy calculations even for highly variable loads (welding machines, robots, etc.).

Always powered

All current-based protection functions require no auxiliary source. Voltage-based protection functions are connected to AC power via a voltage measurement input built into the circuit breaker.

Stored information

The fine setting adjustments, the last 100 events and the maintenance register remain in the control-unit memory even when power is lost.

Micrologic control units

Micrologic H "harmonics"

Micrologic H control units include all the functions offered by Micrologic P. Integrating significantly enhanced calculation and memory functions, the Micrologic H control unit offers in-depth analysis of power quality and detailed event diagnostics. It is intended for operation with a supervisor.

In addition to the Micrologic P functions, the Micrologic H control unit offers:

- in-depth analysis of power quality including calculation of harmonics and the
fundamentals
■ diagnostics aid and event analysis through waveform capture
■ enhanced alarm programming to analyse and track down a disturbance on the AC power system.
Measurements (1)

The Micrologic H control unit offers all the measurements carried out by Micrologic P, with in addition:

- phase by phase measurements of:
- power, energy
\square power factors
- calculation of:
\square current and voltage total harmonic distortion (THD)
- current, voltage and power fundamentals
\square current and voltage harmonics up to the 31st order.
Instantaneous values displayed on the screen

Currents					
I rms	A	1	2	3	N
	A	E-fault		E-leakage	
Imax rms	A	1	2	3	N
	A	E-fault		E-leakage	
Voltages					
U rms	V	12	23	31	
V rms	V	1 N	2N	3 N	
U average rms	V	$(\mathrm{U} 12+\mathrm{U} 23+\mathrm{U} 31) / 3$			
U unbalance	\%				
Power, energy					
P active, Q reactive, S apparent	W, Var, VA	Totals	1	2	3
E active, E reactive, E apparent	Wh, VARh, VAh	Totals consumed - supplied Totals consumed Totals supplied			
Power factor	PF	Total	1	2	3
Frequencies					
F	Hz				
Power-quality indicators					
Total fundamentals		U I P Q S			
THD	\%				
U and Iharmonics	Amplitude $\quad \begin{array}{lllll} & 5 & 7 & 9 & 113\end{array}$				

Harmonics 3, 5, 7, 9, 11 and 13, monitored by electrical utilities, are displayed on the screen.

Demand measurements

Similar to the Micrologic P control unit, the demand values are calculated over a fixed or sliding time window that may be set from 5 to 60 minutes.

Currents	A	1	2	3	N	
I demand	A	E-fault		E-leakage		
	A	1	2	3	N	
Imax demand	A	E-fault		E-leakage		
Power	W, Var, VA	Totals				
P, Q, S demand	W, Var, VA	Totals				
P, Q, S max demand						

Maximeters

Only the current maximeters may be displayed on the screen.

Histories and maintenance indicators

These functions are identical to those of the Micrologic P.

With the communication option

Additional measurements, maximeters and minimeters
Certain measured or calculated values are only accessible with the COM
communication option:
■ I peak/ $\sqrt{2}\left(I_{1}+I_{2}+I_{3}\right) / 3$,

- load level in \% Ir
- power factor (total and per phase)
- voltage and current THD
- K factors of currents and average K factor
- crest factors of currents and voltages
- all the fundamentals per phase

■ fundamental current and voltage phase displacement

- distortion power and distortion factor phase by phase

■ amplitude and displacement of current and voltage harmonics 3 to 31 etc.

- the maximeters and minimeters are available only via the COM option (BCM ULP) for use with a supervisor.

Waveform capture

The Micrologic H control unit stores the last 4 cycles of each instantaneous current or voltage measurement. On request or automatically on programmed events, the control unit stores the waveforms. The waveforms may be displayed in the form of oscillograms by a supervisor via the COM option (BCM ULP). Definition is 64 points per cycle.

Pre-defined analogue alarms (1 to 53)

Each alarm can be compared to user-set high and low thresholds. Overrun of a threshold generates an alarm. An alarm or combinations of alarms can be linked to programmable action such as selective recording of measurements in a log, waveform capture, etc.

Event log and maintenance registers

The Micrologic H offers the same event log and maintenance register functions as the Micrologic P. In addition, it produces a log of the minimums and maximums for each "real-time" value

Additional technical characteristics

Setting the display language
System messages may be displayed in six different languages. The desired language is selected via the keypad.

Protection functions

All current-based protection functions require no auxiliary source. Voltage-based protection functions are connected to AC power via a voltage measurement input built into the circuit breaker.

Measurement functions

Measurement functions are independent of the protection functions.
The high-accuracy measurement module operates independently of the protection module, while remaining synchronised with protection events.

Measurement-calculation mode

An analogue calculation function dedicated to measurements enhances the accuracy of harmonic calculations and the power-quality indicators. The Micrologic H control unit calculates electrical magnitudes using $1.5 x \ln$ dynamics ($20 \mathrm{x} \ln$ for Micrologic P).
Measurement functions implement the new "zero blind time" concept Energies are calculated on the basis of the instantaneous power values, in the traditional and signed modes.
Harmonic components are calculated using the discrete Fourier transform (DFT).

Accuracy of measurements (including sensors)

■ voltage (V) 0.5 \%

- current (A) 1.5 \%
- frequency $(\mathrm{Hz}) 0.1$ \%
- power (W) and energy (Wh) 2 \%
- total harmonic distortion 1%.

Stored information

The fine-setting adjustments, the last 100 events and the maintenance register remain in the control-unit memory even when power is lost.

Time-stamping

Time-stamping is activated as soon as time is set manually or by a supervisor no external power supply module is required (max. drift of 1 hour per year).

Reset

An individual reset, via the keypad or remotely, acts on alarms, minimum and maximum data, peak values, the counters and the indicators.

Functions
and characteristics

Power Meter functions
 Micrologic A/E/P/H control unit
 with COM option (BCM ULP)
 and COM Ethernet gateway

In addition to protection functions, Micrologic A/E/P/H control units offer all the functions of Power Meter products as well as operating-assistance for the circuit breaker.

FDM121 display: navigation.

FDM121 display: current.

FDM121 display: voltage.

FDM121 display: power.

FDM121 display:
consumption.
Examples of measurement screens on the FDM121 display unit.

FDM128 display: navigation.

FDM128 display: current.

FDM128 display: voltage.

FDM128 display: power.

FDM128 display: consumption.

Micrologic A/E/P/H measurement functions are made possible by Micrologic intelligence and the accuracy of the sensors. They are handled by a microprocessor that operates independent of protection functions.

Display

FDM121 display unit (one to one)

The FDM121 switchboard display unit can be connected to a COM option (BCM ULP) using a breaker ULP cord to display all measurements on a screen ${ }^{(1)}$. The result is a veritable $96 \times 96 \mathrm{~mm}$ Power Meter.
The FMD121 display unit requires a 24 V DC power supply. The COM option (BCM ULP) unit is supplied by the same power supply via the breaker ULP cord connecting it to the FDM121.
(1) See page A-30.

FDM128 display unit (one to eight)

Using an IFE Ethernet interface for LV breakers.

For all FDM, in addition to the information displayed on the Micrologic LCD, the FDM screen shows demand, power quality and maximeter/minimeter values along with histories and maintenance indicators.

Measurements
 \qquad

Instantaneous rms measurements

The Micrologic continuously display the RMS value of the highest current of the three phases and neutral (Imax). The navigation buttons can be used to scroll through the main measurements.
In the event of a fault trip, the trip cause is displayed.
The Micrologic A measures phase, neutral, ground fault currents.
The Micrologic E offers voltage, power, Power Factor, measurements in addition to the measurements provided by Micrologic A.
The Micrologic P/H offer frequency, cos. φ in addition to the measurements provided by Micrologic E.

Maximeters / minimeters

Every instantaneous measurement provided by Micrologic A or E can be associated with a maximeter/minimeter. The maximeters for the highest current of the 3 phases and neutral, the demand current and power can be reset via the FDM display unit or the communication system.

Energy metering

The Micrologic E/P/H also measures the energy consumed since the last reset of the meter. The active energy meter can be reset via Micrologic keypad or the FDM display unit or the communication system.

Demand and maximum demand values

Micrologic E/P/H also calculates demand current and power values. These calculations can be made using a block or sliding interval that can be set from 5 to 60 minutes in steps of 1 minute. The window can be synchronised with a signal sent via the communication system. Whatever the calculation method, the calculated values can be recovered on a PC via Modbus communication.
Ordinary spreadsheet software can be used to provide trend curves and forecasts based on this data. They will provide a basis for load shedding and reconnection operations used to adjust consumption to the subscribed power.

Power quality

Micrologic H calculates power quality indicators taking into account the presence of harmonics up to the 15th order, including the total harmonic distortion (THD) of current and voltage.

Micrologic A/E/P/H integrated Power Meter functions			Tуpe		Display	
			A/E	P/H	Micrologic LCD	FDM display
Display of protection settings						
Pick-ups (A) and delays	All settings can be displayed	$\mathrm{Ir}, \mathrm{tr}, \mathrm{Isd}, \mathrm{tsd}, \mathrm{li}, \mathrm{lg}, \mathrm{tg}$	A/E	P/H	-	-
Measurements						
Instantaneous rms measurements						
Currents (A)	Phases and neutral Average of phases Highest current of the 3 phases and neutral Ground fault (Micrologic 6) Current unbalance between phases	I1, I2, I3, IN lavg $=(11+12+13) / 3$ Imax of I1, I2, I3, IN $\% \lg$ (pick-up setting) \% lavg	A/E A/E A/E A/E -IE	P/H P/H P/H P/H P/H		
Voltages (V)	Phase-to-phase Phase-to-neutral Average of phase-to-phase voltages Average of phase-to-neutral voltages $\mathrm{Ph}-\mathrm{Ph}$ and $\mathrm{Ph}-\mathrm{N}$ voltage unbalance Phase sequence	V12, V23, V31 V1N, V2N, V3N $\begin{aligned} & \text { Vavg }=(\mathrm{V} 12+\mathrm{V} 23+\mathrm{V} 31) / 3 \\ & \operatorname{Vavg}=(\mathrm{V} 1 \mathrm{~N}+\mathrm{V} 2 \mathrm{~N}+\mathrm{V} 3 \mathrm{~N}) / 3 \end{aligned}$ \% Vavg and \% Vavg $1-2-3,1-3-2$		P/H P/H P/H P/H P/H P/H		
Frequency (Hz)	Power system	f	-/-	P/H	\square	\square
Power	Active (kW)	P, total P, per phase	$\begin{array}{\|l\|} \hline \text { - IE } \\ \text { - IE } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { P/H } \\ \hline P / H \\ \hline \end{array}$		
	Reactive (kVAR)	Q, total Q, per phase	$\begin{aligned} & \text { - IE } \\ & -/- \end{aligned}$	$\begin{aligned} & \mathrm{P} / \mathrm{H} \\ & \mathrm{P} / \mathrm{H} \end{aligned}$		
	Apparent (kVA)	S, total S, per phase	$\begin{array}{\|l\|l\|} \hline \text { - IE } \\ -/- \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{P} / \mathrm{H} \\ \mathrm{P} / \mathrm{H} \\ \hline \end{array}$		
	Power Factor	PF, total PF, per phase	$\begin{aligned} & \text { - IE } \\ & \text {-/ } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{P} / \mathrm{H} \\ & \mathrm{P} / \mathrm{H} \end{aligned}$		
	Cos. φ	Cos. φ, total Cos. φ, per phase	$\begin{aligned} & -/-1 \\ & -/- \end{aligned}$	$\begin{aligned} & \mathrm{P} / \mathrm{H} \\ & \mathrm{P} / \mathrm{H} \end{aligned}$		
Maximeters / minimeters						
	Associated with instantaneous rms measurements	Reset via FDM display unit and Micrologic keypad	A/E	P/H	\square	\square
Energy metering						
Energy	Active (kW), reactive (kVARh), apparent (kVAh)	Total since last reset	- IE	P/H	\square	\square
Demand and maximum demand values						
Demand current (A)	Phases and neutral	Present value on the selected window Maximum demand since last reset	$\begin{aligned} & -/ E \\ & -/ E \end{aligned}$	$\begin{aligned} & \text { P/H } \\ & \text { P/H } \end{aligned}$		-
Demand power	Active (kWh), reactive (kVAR), apparent (kVA)	Present value on the selected window Maximum demand since last reset	$\begin{aligned} & -/ E \mathrm{E} \\ & -/ E \end{aligned}$	$\begin{aligned} & \mathrm{P} / \mathrm{H} \\ & \mathrm{P} / \mathrm{H} \end{aligned}$		\square
Calculation window	Sliding, fixed or com-synchronised	Adjustable from 5 to 60 minutes in 1 minute steps ${ }^{(1)}$	-IE	P/H	-	-
Power quality						
Total harmonic distortion (\%)	Of voltage with respect to rms value	THDU,THDV of the $\mathrm{Ph}-\mathrm{Ph}$ and $\mathrm{Ph}-\mathrm{N}$ voltage	-/-	H	\square	-
	Of current with respect to rms value	THDI of the phase current	-/-	H	\square	\square

[^3]
Operating-assistance functions Micrologic A/E/P/H control unit with COM option (BCM ULP)

Histories
■ Trip indications in clear text in a number of user-selectable languages.
- Time-stamping: date and time of trip

Maintenance indicators
Micrologic control unit have indicators for, among others, the number of operating cycles, contact wear P / H, load profile and operating times (operating hours counter) of the Masterpact circuit breaker.
It is possible to assign an alarm to the operating cycle counter to plan maintenance.
The various indicators can be used together with the trip histories to analyse the level of stresses the device has been subjected to.

Management of installed devices

Each circuit breaker equipped with a COM option (BCM ULP) can be identified via the communication system:
■ serial number

- firmware version
- hardware version
- device name assigned by the user.

This information together with the previously described indications provides a clear view of the installed devices.

(1) Available via the communication system only.

Additional technical characteristics

Contact wear

Each time Masterpact opens, the Micrologic P/H trip unit measures the interrupted current and increments the contact-wear indicator as a function of the interrupted current, according to test results stored in memory. Breaking under normal load conditions results in a very slight increment. The indicator value may be read on the FDM display.
It provides an estimation of contact wear calculated on the basis of the cumulative forces affecting the circuit breaker. When the indicator reaches 100%, it is advised to inspect the circuit breaker to ensure the availability of the protected equipment.

Circuit breaker load profile

Micrologic A/E/P/H calculates the load profile of the circuit breaker protecting a load circuit.
The profile indicates the percentage of the total operating time at four current levels
(\% of breaker In):

- 0 to 49% In
- 50 to 79% In
- 80 to 89 \% ln
- $\geqslant 90 \%$ In.

This information can be used to optimise use of the protected equipment or to plan ahead for extensions.

Switchboard-display functions
 Micrologic A/E/P/H control unit with COM option (BCM ULP)

Micrologic measurement capabilities come into full play with the FDM121 switchboard display. It connects to COM option (BCM ULP) via a breaker ULP cord and displays Micrologic information. The result is a true integrated unit combining a circuit breaker and a Power Meter. Additional operating assistance functions can also be displayed.

[^4]
FDM121 switchboard display

An FDM121 switchboard display unit can be connected to a ULP IMU using a prefabricated cord to display all measurements, alarms, histories and event tables, maintenance indicators, management of installed devices on a screen. The result is a veritable $96 \times 96 \mathrm{~mm}$ Power Meter.
The FMD121 display unit requires a 24 V DC power supply.
The FDM121 is a switchboard display unit that can be integrated in the Compact NSX100 to 630 A, Powerpact H/J/L/P/R, compact NS or Masterpact systems. It uses the sensors and processing capacity of the Micrologic trip unit. It is easy to use and requires no special software or settings. It is immediately operational when connected to the Compact NSX by a simple cord.
Also, it provides monitoring and control with the use of the I/O application module, the motor mecanism module, or the Breaker Status module.
The FDM121 is a large display, but requires very little depth. The anti-glare graphic screen is backlit for very easy reading even under poor ambient lighting and at sharp angles.

Display of Micrologic measurements and alarms

The FDM121 is intended to display Micrologic 5 / 6 measurements, alarms and operating information. It cannot be used to modify the protection settings.
Measurements may be easily accessed via a menu. All user-defined alarms are automatically displayed. The display mode depends on the priority level selected during alarm set-up:
■ high priority: a pop-up window displays the time-stamped description of the alarm and the orange LED flashes
■ medium priority: the orange "Alarm" LED goes steady on

- low priority: no display on the screen.

All faults resulting in a trip automatically produce a high-priority alarm, without any special settings required. In all cases, the alarm history is updated. Micrologic saves the information in its non-volatile memory in the event of an FDM121 power failure.

Status indications and remote control

When the circuit breaker is equipped with the Breaker Status Module, the FDM121
display can also be used to view circuit breaker status conditions:

- O/F: ON/OFF

■ SD: trip indication
■ SDE: Fault-trip indication (overload, short-circuit, ground fault).
When the circuit breaker system is equipped with the I/O application module, the
FDM121 can monitor and control:

- craddle management
- circuit breaker operation
- light and load control
- custom application.

When the circuit breaker system is equipped with the motor mechanism module, the FDM121 offers remote closing and opening control.

Main characteristics

■ $96 \times 96 \times 30 \mathrm{~mm}$ screen requiring 10 mm behind the door (or 20 mm when the
24 V power supply connector is used).
■ White backlighting.
■ Wide viewing angle: vertical $\pm 60^{\circ}$, horizontal $\pm 30^{\circ}$.

- High resolution: excellent reading of graphic symbols.

■ Alarm LED: flashing orange for alarm pick-up, steady orange after operator reset if alarm condition persists.

- Operating temperature range $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.

■ CE / UL / CSA marking (pending).
■ 24 V DC power supply, with tolerances $24 \mathrm{~V}-20 \%(19.2 \mathrm{~V})$ to $24 \mathrm{~V}+10 \%$ (26.4 V). When the FDM121 is connected to the communication network, the 24 V DC can be supplied by the communication system wiring system.

- Consumption 40 mA .

Mounting

The FDM121 is easily installed in a switchboard.
■ Standard door cut-out $92 \times 92 \mathrm{~mm}$.

- Attached using clips.

To avoid a cut-out in the door, an accessory is available for surface mounting by drilling only two 22 mm diameter holes.
The FDM121 degree of protection is IP54 in front. IP54 is maintained after switchboard mounting by using the supplied gasket during installation.

Connection

The FDM121 is equipped with:

- a 24 V DC terminal block:
\square plug-in type with 2 wire inputs per point for easy daisy-chaining
- power supply range of 24 V DC -20% (19.2 V) to 24 V DC +10 \% (26.4 V).

A 24 V DC type auxiliary power supply must be connected to a single point on the
ULP system. The FDM121 display unit has a 2-point screw connector on the rear panel of the module for this purpose. The ULP module to which the auxiliary power supply is connected distributes the supply via the ULP cable to all the ULP modules connected to the system and therefore also to Micrologic.

■ two RJ45 jacks.
The Micrologic connects to the internal communication terminal block on the Masterpact via the breaker ULP cord. Connection to one of the RJ45 connectors on the FDM121 automatically establishes communication between the Micrologic and the FDM121 and supplies power to the Micrologic measurement functions.
When the second connector is not used, it must be fitted with a line terminator.

Navigation

Five buttons are used for intuitive and fast navigation.
The "Context" button may be used to select the type of display (digital, bargraph, analogue).
The user can select the display language (Chinese, English, French, German, Italian, Portuguese, Spanish, etc.).

Screens

Main menu
When powered up, the FDM121 screen automatically displays the ON/OFF status of the device.

When not in use, the screen is not backlit. Backlighting can be activated by pressing one of the buttons. It goes off after 3 minutes.

Fast access to essential information

■ "Quick view" provides access to five screens that display a summary of essential operating information (I, U, f, P, E, THD, circuit breaker On / Off).

Access to detailed information

■ "Metering" can be used to display the measurement data (I, U-V, f, P, Q, S, E,
THD, PF) with the corresponding min/max values.

- Alarms displays active alarms and the alarm history.
- Services provides access to the operation counters, energy and maximeter reset
- function, maintenance indicators, identification of modules connected to the internal bus and FDM121 internal settings (language, contrast, etc.).

Communication components and FDM121 connections

Functions
and characteristics

Switchboard-display functions
 Micrologic A/E/P/H control unit with COM Ethernet gateway

Micrologic measurement capabilities come into full play with the FDM128 switchboard display. It connects to Ethernet communication via RJ45 port and displays Micrologic information. The result is a true integrated unit combining a circuit breaker and a Power Meter. Additional operating assistance functions can also be displayed.

FDM128 display.

FDM128 switchboard display

The FDM128 is an intelligent Ethernet display. It collects the data from up to 8 devices via Ethernet network.
The FDM128 switchboard display unit can be connected to a Micrologic COM option (BCM ULP via IFE). It uses the sensors and processing capacity of the Micrologic control unit. It is easy to use and requires no special software or settings. The FDM128 is a large display, but requires very little depth. The anti-glare graphic screen is backlit for very easy reading even under poor ambient lighting and at sharp angles.
FDM128 switchboard display is designed to manage up to 8 devices (Masterpact NT/NW, Compact NS, Compact NSX or Smartlink).

Display of Micrologic measurements and trips

The FDM128 is intended to display Micrologic A/E measurements, trips and operating information. It cannot be used to modify the protection settings. Measurements may be easily accessed via a menu.
Trips are automatically displayed.
A pop-up window displays the time-stamped description of the trip.

Status indications

When the circuit breaker is equipped with the Breaker Status Command Module (BSCM) and NSX cord, the FDM128 display can also be used to view circuit breaker status conditions:
■ O/F: ON/OFF
■ SDE: Fault-trip indication (overload, short-circuit, ground fault)
■ CE, CD cradle management with I/O application module.

Remote control

When the circuit breaker is equipped with the BSCM, NSX cord and Communication Motor Mechanism (MTC), the FDM128 display can also be used to control (open/ close) the circuit breaker.

Main characteristics

■ $115.2 \times 86.4 \mathrm{~mm}$ with 5.7 " QVGA display 320×240 pixels.
■ Color TFT LCD, LED backlight.
■ Wide viewing angle: vertical $\pm 80^{\circ}$, horizontal $\pm 70^{\circ}$.

- High resolution: excellent reading of graphic symbols.
- Operating temperature range $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
- CE / UL / CSA marking (pending).

■ 24 V DC power supply, with tolerances 24 V (limit 20.4-28.8 V DC).

- Consumption $\leqslant 6.8 \mathrm{~W}$.

Mounting

The FDM128 is easily installed in a switchboard.
■ Standard door hole Ø 22 mm.
The FDM128 degree of protection is IP65 in front and IP54.

Connection

The FDM128 is equipped with:

- a 24 V DC terminal block:
- power supply range of 24 V DC (limit 20.4-28.8 V DC). The FDM128 display unit has a 2-point screw connector on the rear panel of the module for this purpose
■ One RJ45 Ethernet jacks.
The Micrologic connects to the internal communication terminal block on the Masterpact via the breaker ULP cord and Ethernet connection through IFE.

Product identification.

Services.

Metering: meter.

Navigation
Touch screen is used for intuitive and fast navigation.
The user can select the display language (Chinese, English, French, German, Italian, Portuguese, Spanish, etc.).

Screens

Main menu

When not in use, the screen is automatically shifted to low back-lighting.

Fast access to essential information

■ "Quick view" provides access to five screens that display a summary of essential operating information (I, U, f, P, E, THD, circuit breaker On / Off).

Access to detailed information

■ "Metering" can be used to display the measurement data (I, U-V, f, P, Q, S, E,
THD , PF) with the corresponding min/max values.

- Alarms displays the trip history.
- Services provides access to the operation counters, energy and maximeter reset function, maintenance indicators, identification of modules connected to the internal bus and FDM128 internal settings (language, contrast, etc.).

External sensor (CT).

Rectangular sensor.

External sensor for source ground return protection.

Long time rating plug.

External 24 V DC power supply module.

External sensors

External sensor for earth-fault and neutral protection
The sensors, used with the 3P circuit breakers, are installed on the neutral conductor for:
■ neutral protection (with Micrologic P and H)
■ residual type earth-fault protection (with Micrologic A, E, P and H).
The rating of the sensor (CT) must be compatible with the rating of the circuit breaker:

- NT06 to NT16: TC 400/1600

■ NW08 to NW20: TC 400/2000
■ NW25 to NW40: TC 1000/4000

- NW40b to NW63: TC 4000/6300.

For oversized neutral protection the sensor rating must be compatible with the measurement range: $1.6 \times \ln$ (available up to NW40 and NT16).

Rectangular sensor for earth-leakage protection

The sensor is installed around the busbars (phases + neutral) to detect the zerophase sequence current required for the earth-leakage protection. Rectangular sensors are available in two sizes.
Inside dimensions (mm)
■ 280×115 up to 1600 A for Masterpact NT and NW
■ 470×160 up to 3200 A for Masterpact NW.
External sensor for source ground return protection (SGR)
The sensor is installed around the connection of the transformer neutral point to earth and connects to the Micrologic 6.0 control unit via an MDGF module to provide the source ground return (SGR) protection.

Voltage measurement inputs

Voltage measurement inputs are required for power measurements (Micrologic P or H) and for earth-leakage protection (Micrologic 7...).
As standard, the control unit is supplied by internal voltage measurement inputs placed downstream of the pole for voltages between 220 and 690 V AC. On request, it is possible to replace the internal voltage measurement inputs by an external voltage input (PTE option) which enables the control unit to draw power directly from the distribution system upstream of the circuit breaker. An 3 m cable with ferrite comes with this PTE option.

Long-time rating plug

Four interchangeable plugs may be used to limit the long-time threshold setting range for higher accuracy.
The time delay settings indicated on the plugs are for an overload of 6 Ir (for further details, see the characteristics on page A-11 and page A-15).
As standard, control units are equipped with the 0.4 to 1 plug.
Setting ranges

$\begin{array}{llllllllllll}\text { Standard } & I r=\ln x \ldots & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 0.95 & 0.98 & 1\end{array}$ | Low-setting option | $\operatorname{Ir}=\ln \mathrm{x} \ldots$ | 0.4 | 0.45 | 0.50 | 0.55 | 0.60 | 0.65 | 0.70 | 0.75 | 0.8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | High-setting option | $\operatorname{Ir}=\ln \mathrm{x} \ldots$ | 0.80 | 0.82 | 0.85 | 0.88 | 0.90 | 0.92 | 0.95 | 0.98 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Off plug

No long-time protection (Ir = In for Isd setting)
Important: long-time rating plugs must always be removed before carrying out insulation or dielectric withstand tests.

External 24 V DC power-supply module (AD)

The external power-supply module makes it possible to use the display even if the circuit breaker is open or not supplied (for the exact conditions of use, see the "electrical diagrams" part of this catalogue).
This module powers both the control unit (100 mA) and the M2C and M6C programmable contacts $(100 \mathrm{~mA})$.
With the Micrologic A/E control unit, this module makes it possible to display currents of less than 20% of In.
With the Micrologic P and H , it can be used to display fault currents after tripping. If the COM option is used, a second dedicated power supply shall be used. We recommend to use the AD power supply due to its low stray primary secondary capacitance. Good operation of the Micrologic trip unit in noisy environment is not guaranteed with other power supplies.

Characteristics

- Power supply:

ㅁ 110/130, 200/240, 380/415 V AC, 50/60 Hz (+10 \% -15 \%)

- 24/30, 48/60, 100/125 V DC (+20 \% -20 \%).

■ Output voltage: 24 V DC $\pm 5 \%, 1$ A.

- Ripple < 1 \%.

■ Dielectric withstand : 3.5 kV rms between input/output, for 1 minute.
■ Overvoltage category: as per IEC 60947-1 cat. 4.

Battery module

Lead-seal cover.

Battery module

The battery module maintains display operation and communication with the supervisor if the power supply to the Micrologic control unit is interrupted. It is installed in series between the Micrologic control unit and the AD module.

Characteristics

■ Battery run-time: 4 hours (approximately).

- Mounted on vertical backplate or symmetrical rail.

M2C, M6C programmable contacts

These contacts are optional equipment for the Micrologic E, P and H control units. They are described with the indication contacts for the circuit breakers.

Micrologic		Type E	Types P, H	
Characteristics		M2C	M2C/M6C	
Minimum load		$100 \mathrm{~mA} / 24 \mathrm{~V}$	$100 \mathrm{~mA} / 24 \mathrm{~V}$	
Breaking capacity (A)	VAC	240	5	5
p.f.: 0.7		380	3	3
		V DC	24	1.8
		48	1.5	1.8
		125	0.4	1.5
		250	0.15	0.4

M2C: 24 V DC power supplied by control unit (consumption 100 mA).
M6C: external 24 V DC power supply required (consumption 100 mA).

Spare parts

Lead-seal covers

A lead-seal cover controls access to the adjustment dials.
When the cover is closed:
■ it is impossible to modify settings using the keypad unless the settings lockout pin on the cover is removed
\square the test connector remains accessible

- the test button for the earth-fault and earth-leakage protection function remains accessible.

Characteristics

- Transparent cover for basic Micrologic and Micrologic A, E control units
- Non-transparent cover for Micrologic P and H control units.

Spare battery

A battery supplies power to the LEDs identifying the tripping causes.
Battery service life is approximately ten years.
A test button on the front of the control unit is used to check the battery condition. The battery may be replaced on site when discharged.

Test equipment

Hand-held test kit

The hand-held mini test kit may be used to:

- check operation of the control unit and the tripping and pole-opening system by sending a signal simulating a short-circuit
- supply power to the control units for settings via the keypad when the circuit breaker is open (Micrologic P and H control units).
Power source: standard LR6-AA battery.

Full function test kit

The test kit can be used alone or with a supporting personal computer.
The test kit without PC may be used to check:
■ the mechanical operation of the circuit breaker

- the electrical continuity of the connection between the circuit breaker and the control unit
■ operation of the control unit:
\square display of settings
\square automatic and manual tests on protection functions
\square test on the zone-selective interlocking (ZSI) function
\square inhibition of the earth-fault protection
\square inhibition of the thermal memory.
The test kit with PC offers in addition:
- the test report (software available on request).

Functions and characteristics

Enerlin'X communication system Products overview

Enerlin'X communication system provides access
to status, electrical values and devices control using
Ethernet and Modbus-SL communication protocols.

Ethernet has become the universal link between switchboards, computers and communication devices inside the building. The large amount of information which can be transferred makes the connection of Enerlin'X digital system to hosted web services of Schneider Electric a reality. More advantages are offered to integrators thanks to configuration web pages available remotely or on the local Ethernet network.

Modbus SL is the most widely used communication protocol in industrial networks. It operates in master-slave mode. The devices (slaves) communicate one after the other with a gateway (master).

ULP is a fast communication link dedicated to circuit breaker monitoring and control.

(1) Gateway: transfers data from a network to another (ie.: Modbus to Ethernet).
(2) Interface: transfers data from an equipment to a network.(ie.: ULP to Modbus).

Plug and play commissioning tools give a real peace of mind to panel builders as their panels can be functionally checked before delivery.

Commissioning / maintenance tools

Web pages embedded into Com'X 200 and
Acti9 Smartlink Ethernet gateways
Access with a standard PC and common browser:
■ commissioning,

- communication diagnosis,
- functional tests...

Electrical Asset Manager

Loaded into a standard PC Error free commissioning. Time saving, easier management and maintenance thanks to the advanced services:
■ project management,

- configuration of controllers, gateways, ...

■ test of communication networks, diagnostic report...

Functions

 and characteristics
Communication

Communication wiring system

Wiring system ULP
The wiring system is designed for low-voltage power switchboards. Installation requires no tools or special skills.
The prefabricated wiring ensures both data transmission (Modbus protocol) and 24 V DC power distribution for the communications modules on the Micrologic control units.

A BCM ULP: Breaker Communication Module with ULP port
(B) Micrologic control unit

C Breaker ULP cord
LV434195
LV434196
(D) Modbus cable

E Ethernet cable
(F)FD121: Front Display Module
© FDM128: Front Display Module
\boldsymbol{H} Smartlink
(1) Acti9
(1) ULP line terminators
© $/ 10$ (Input/Output) application module
TRV00121
LV434128
A9XMSB11
TRV00880
(L) IFE: Ethernet interface

(1) External 24 VDC power supply module
(1) IFM: Modbus-SLinterface

OCom'x 200
(Pulp cable

0.3 m	TRV00803
0.6 m	TRV00806
1 m	TRV00810
2 m	TRV00820
3 m	TRV00830
5 m	TRV00850
0.35 m	LV434200
1.3 m	LV434201
3 m	LV434202

Overview of functions

A: Micrologic with ammeter
E: Micrologic "Energy"
P: Micrologic "Power"
H: Micrologic "Harmonics"
Note: see the description of the Micrologic control units for further details on protection and alarms, measurements, waveform capture, histories, logs and maintenance indicators.

Four functional levels

The Masterpact can be integrated into Ethernet and Modbus communication environment.
There are four possible functional levels that can be combined.

	Switchdisconnectors	Circuit breaker			
Status indications					
ON/OFF (O/F)	■	A	E	P	H
Spring charged CH	\square	A	E	P	H
Ready to close	\square	A	E	P	H
Fault-trip SDE	\square	A	E	P	H
Connected / disconnected / test position CE/CD/CT (I/O application module only)	\square	A	E	P	H
Controls					
MX1 open	-	A	E	P	H
XF close	\square	A	E	P	H
Measurements					
Instantaneous measurement information	\square	A	E	P	H
Averaged measurement information	\square		E	P	H
Maximeter / minimeter	\square	A	E	P	H
Energy metering	\square		E	P	H
Demand for current and power	\square		E	P	H
Power quality	\square				H
Operating assistance					
Protection and alarm settings		A	E	P	H
Histories		A	E	P	H
Time stamped event tables		A	E	P	H
Maintenance indicators		A	E	P	H
Modbus principle					

The Modbus RS 485 (RTU protocol) system is an open bus on which communicating Modbus devices (Compact NS with Modbus COM, Power Meter PM700, PM800, Sepam, Vigilohm, Compact NSX, etc.) are installed. All types of PLCs and microcomputers may be connected to the bus.

Addresses

The Modbus communication parameters (address, baud rate, parity) are entered using the keypad on the Micrologic A, E, P, H. For a switch-disconnector, it is necessary to use the Electrical Asset Manager or RSU (Remote Setting Utility) Micrologic utility.

Number of devices

The maximum number of devices that may be connected to the Modbus bus depends on the type of device (Compact with Modbus COM, PM700, PM800, Sepam, Vigilohm, Compact NSX etc.), the baud rate (19200 is recommended), the volume of data exchanged and the desired response time. The RS 485 physical layer offers up to 32 connection points on the bus (1 master, 31 slaves).
A fixed device requires only one connection point (communication module on the device). A drawout device uses two connection points (communication modules on the device and on the chassis).
The number must never exceed 31 fixed devices or 15 drawout devices.

Length of bus

The maximum recommended length for the Modbus bus is 1200 meters.

Bus power source

A 24 V DC power supply is required (less than 20% ripple, insulation class II).

Ethernet principle

Ethernet is a data link and physical layer protocol defined by IEEE 80210 and 100 Mbps specifications that connects computer or other Ethernet devices. Ethernet is an asynchronous Carrier Sense Multiple Access with Collision detection (referred as CSMA/CD) protocol. Carrier Sense means that the hosts can detect whether the medium (coaxial cable) is idle or busy. Multiple Access means that multiple hosts can be connected to the common medium. Collision Detection means a host detects whether its transmission has collided with the transmission of another host (or hosts).
FE Ethernet interface can be connected to a PC or a laptop over Ethernet. The maximum length of Ethernet cable is 100 meters. IFE Ethernet interface + gateway provides a Modbus TCP/IP gateway over Ethernet to enable Modbus TCP communication from a Modbus TCP master to any Modbus slave devices connected to it. The maximum active Modbus TCP client connection is twelve.
IFE Ethernet interface has an embedded web server (web page)
The Modbus RS 485 (RTU protocol) system is an open bus on which communicating Modbus devices (Compact NS with Modbus COM, Power Meter PM700, PM800, Sepam, Vigilohm, Compact NSX, etc.) are installed. All types of PLCs and microcomputers may be connected to the bus.

Communication

 COM option in MasterpactAll the Masterpact devices can be fitted with the communication function thanks to the COM option. Masterpact uses the Ethernet or Modbus communications protocol for full compatibility with the supervision management systems.
Eco COM is limited to the transmission of metering data and status. It is not used to communicate controls.

$B C M$ ULP.

For fixed and Drawout devices, the common communication option is made up of:
■ a BCM ULP module, installed behind the Micrologic control unit and supplied with its set of sensors (OF, SDE, PF and CH micro switches) its kit for connection to XF and MX1 communicating voltage releases and its COM terminal block (inputs E1 to E6). This module is independent of the control unit. It receives and transmits information on the communication network. An infra-red link transmits data between the control unit and the communication module.
Consumption: $30 \mathrm{~mA}, 24 \mathrm{~V}$.
■ IFM, this module required for connection to the network, contains the Modbus address (1 to 99) declared by the user via the two dials in front. It automatically adapts (baud rate, parity) to the Modbus network in which it is installed.
Or
■ IFE, the Ethernet interface for LV circuit breaker enables an intelligent modular unit (IMU), for example a Masterpact NT/NW or Compact NSX circuit breaker to be connected to an Ethernet network. Each circuit breaker has its own IFE and a corresponding IP address.

For drawout device the Cradle Management option must be added: I/O (Input/Output) application module for LV breaker, the I/O application module is delivered with withdrawable devices ordered with the COM option, for cradle management. It must be installed on a DIN rail near the device. It must be connected to the ULP system and to the position contacts (CD, CT, CE) that transmit the position of the device in the cradle.
For communicating remote control, option with XF and MX1 communicating voltage releases must be added:
The XF and MX1 communicating voltage releases are equipped for connection to the "device" communication module.
The remote-tripping function (MX2 or MN) are independent of the communication option. They are not equipped for connection to the "device" communication module

I/O application module.

IFE interface, ref.: LV434010

IFE interface + gateway, ref.: LV434011

IFE interface, IFE interface + gateway description

Introduction

The IFE interface and IFE interface + gateway enable LV circuit breakers as Masterpact NT/NW, Compact NSX or Powerpact to be connected to an Ethernet network.

IFE interface: ref. LV434010

Provides an Ethernet access to a single LV circuit breaker.

Function

Interface - one circuit breaker is connected to the IFE interface via its ULP port.

IFE interface + gateway: ref. LV434011

Provides an Ethernet access to one or several LV circuit breakers.

Functions

■ Interface - one circuit breaker is connected to the IFE interface via its ULP port.

- Gateway: several circuit breakers on a Modbus network are connected via the IFE interface + gateway master Modbus port.

IFE interface, IFE interface + gateway features

■ Dual 10/100 Mbps Ethernet port for simple daisy chain connection.
■ Device profile web service for discovery of the IFE interface, IFE interface + gateway on the LAN.
■ ULP compliant for localization of the IFE interface in the switchboard.

- Ethernet interface for Compact, Masterpact and Powerpact circuit breakers.

■ Gateway for Modbus-SL connected devices (IFE interface + gateway only).

- Embedded set-up web pages.

■ Embedded monitoring web pages

- Embedded control web pages.
- Built-in e-mail alarm notification.

Mounting

The IFE interface, IFE interface + gateway are DIN rail mounting devices. A stacking accessory enables the user to connect several IFMs (ULP to Modbus interfaces) to an IFE interface + gateway without additional wiring.

24 V DC power supply

The IFE interface, IFE interface + gateway must always be supplied with 24 V DC. The IFMs stacked to an IFE interface + gateway are supplied by the IFE interface + gateway, thus it is not necessary to supply them separately. It is recommended to use an UL listed and recognized limited voltage/limited current or a class 2 power supply with a 24 V DC, 3 A maximum.

IFE interface, IFE interface + gateway firmware update

The firmware can be updated using:

- FTP
- customer engineering tool.

Required circuit breaker communication modules

The connection to IFE interface or IFE interface + gateway requires a communication module embedded into the circuit breaker:
■ Masterpact NT/NW (Fixed or drawout): BCM ULP communication module - Drawout Masterpact NT/NW: BCM ULP and its respective I/O (Input/Output) application module.
All connection configurations for Masterpact NT/NW require the breaker ULP cord. The insulated NSX cord is mandatory for system voltages greater than 480 V AC When the second ULP RJ45 connector is not used, it must be closed with an ULP terminator (TRV00880).
Network communication interface

Characteristic		Value
Type of interface module		Modbus RTU, RS485 serial connection Modbus TCP/IP Ethernet
Transmission	Modbus RS485	Transfer rate: 9,600...19,200 Baud Medium Double shielded twisted pair Impedance 120Ω
	Ethernet	Transfer rate : 10/100 Mbps Medium STP, Cat5e, straight cable
Structure	Type	Modbus, Ethernet
	Method	Master/Slave
Device type	Modbus	Master
	Ethernet	Server
Turnaround time	Modbus	10 ms
	Ethernet	1 ms
Maximum length of cable	Modbus	1000 m
	Ethernet	100 m
Type of bus connector	Modbus	4-pin connector
	Ethernet	RJ45 (Shielded)

(A) Ethernet 1 and Ethernet 2 communication port.

B 24 VDC power supply terminal block.
(C) Ethernet communication LEDs:

■ yellow: 10 Mb

- green: 100 Mb .
(D) Module status LED:
- steady off: no power
- steady green: device operational
- steady red: major fault
- flashing green: standby
- flashing red: minor fault
- flashing green/red: self-test.
(E) Network status LED:
- steady off: not power/no valid IP address - steady green: connected, valid IP address

■ steady orange: default IP address

- steady red: duplicated IP address
- flashing green/red: Self-test.
(F) Sealable transparent cover.
(G)ULP status LED.
(H) Test button (accessible closed cover).
(1) Locking pad.
(J) Modbus traffic status LED (LV434011 only).
(K) Device name label.
(L) ULP ports.

General characteristics	
Environmental characteristics	
Conforming to standards	UL 508, UL 60950, IEC 60950, 60947-6-2
Certification	cUIUs, GOST, FCC, CE
Ambient temperature	-20 to $+70^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$
Relative humidity	5-85 \%
Level of pollution	Level 3
Flame resistance	ULVO
Mechanical characteristics	
Shock resistance	$1000 \mathrm{~m} / \mathrm{s} 2$
Resistance to sinusoidal vibrations	$5 \mathrm{~Hz}<\mathrm{f}<8.4 \mathrm{~Hz}$
Electrical characteristics	
Resistance to electromagnetic discharge	Conforming to IEC/EN 61000-4-3
Immunity to radiated fields	$10 \mathrm{~V} / \mathrm{m}$
Immunity to surges	Conforming to IEC/EN 61000-4-5
Consumption	120 mA at 24 V input
Physical characteristics	
Dimensions	$72 \times 105 \times 71 \mathrm{~mm}$ ($2.83 \times 4.13 \times 2.79$ in. $)$
Mounting	DIN rail
Weight	182.5 g (0.41 lb)
Degree of protection of the installed IO	- On the front panel (wall mounted enclosure): IP4x - Connectors: IP2x - Other parts: IP3x
Connections	Screw type terminal blocks
Technical characteristics -24 V DC power supply	
Power supply type	Regulated switch type
Rated power	72 W
Input voltage	100-120 V AC for single phase 200-500 V AC phase-to-phase
PFC filter	With IEC 61000-3-2
Output voltage	24 V DC
Power supply out current	3 A

IFE web page description

Monitoring web page

Real time data 67	\square	
Device logging	■	
Control web page		
Single device control	\square	
Diagnostics web page		
Statistics	\square	
Device information	\square	
IMU information	\square	
Read device registers	\square	
Communication check	■	
Maitenance web page		
Maintenance log	\square	
Maintenance counters	■	
Setup web page		
Device localization/name	\square	
Ethernet configuration (dual port)	\square	
IP configuration	\square	
Modbus TCP/IP filtering	\square	
Serial port	■	
Date and time	\square	
E-mail server configuration	\square	
Alarms to be e-mailed	\square	
Device list	\square	
Device logging	\square	
Device log export	\square	
SNMP parameters	\square	
Documentation links	\square	
Preferences	\square	
Advanced services control	\square	
User accounts	■	
Web page access	\square	
	Schneider OElectric	A-37

IFM Modbus communication interface Ref.: TRV00210.

Function

A IFM - Modbus communication interface - is required for connection of a Masterpact or Compact to a Modbus network as long as this circuit breaker is provided with a ULP (Universal Logic Plug) port. The port is available on respectively a BCM ULP or BSCM embedded module.
The IFM is defined as an IMU (Intelligent Modular Unit) in the ULP connection System documentation.

Once connected, the circuit breaker is considered as a slave by the Modbus master. Its electrical values, alarm status, open/close signals car be monitored or controlled by a Programmable Logic Controller or any other system.

Characteristics

ULP port

2 RJ45 sockets, internal parallel wiring

- Connection of a single circuit breaker (eventually via its I/O application module).

■ A ULP line terminator or an FDM121 display unit must be connected to the second
RJ45 ULP socket.
The RJ45 sockets deliver a 24 VDC supply fed from the Modbus socket.
Built-in test function, for checking the correct connection to the circuit breaker and FDM121 display unit.

Modbus slave port

■ Top socket for screw-clamp connector, providing terminals for:

- 24 VDC input supply ($0 \mathrm{~V},+24 \mathrm{~V}$)
\square Modbus line (D1, D2, Gnd).
■ Lateral socket, for Din-rail stackable connector.
Both top and lateral sockets are internally parallel wired.
■ Multiple IFM can be stacked, thus sharing a common power supply and Modbus
line without individual wiring.
- On the front face:
\square Modbus address setting (1 to 99): 2 coded rotary switches
- Modbus locking pad: enables or disable the circuit breaker remote control
and modification of IFM parameters.
■ Self adjusting communication format (Baud rate, parity).

Technical characteristics

IFM Modbus communication interface

Dimensions		$18 \times 72 \times 96 \mathrm{~mm}$
Maximum number of stacked IFM		12
Degree of protection of the installed module	Part projecting beyond the escutcheon	IP4x
	Other module parts	IP3x
	Connectors	IP2x
Operating temperature		$-25 . . .+70^{\circ} \mathrm{C}$
Power supply voltage		24 V DC -20 \%/+10 \% (19.2...26.4 V DC)
Consumption	Typical	$21 \mathrm{~mA} / 24 \mathrm{~V}$ DC at $20^{\circ} \mathrm{C}$
	Maximum	$30 \mathrm{~mA} / 19.2 \mathrm{~V}$ DC at $60^{\circ} \mathrm{C}$
Certification		
CE		IEC/EN 60947-1
UL		UL 508 - Industrial Control Equipment
CSA		No. 142-M1987 - Process Control Equipment CAN/CSA C22.2 No. 0-M91 - General requirements - Canadian Electrical Code Part CAN/CSA C22.2 No. 14-05 - Industrial Control Equipment

Simplified IFM installation
Staking IFM

Stacking an IFE interface + gateway with IFMs

Description

The I/O input/output application module for LV breaker is part of an ULP system with built-in functionalities and applications to enhance the application needs. The ULP system architecture can be built without any restrictions using the wide range of circuit breakers.
The I/O application is compliant with the ULP system specifications.
Two I/O application module can be connected in the same ULP network.
The ranges of LV circuit breakers enhanced by the I/O are:
■ Masterpact NW

- Masterpact NT
- Compact NS1600b-3200
- Compact NS630b-1600

■ Compact NSX100-630 A.

I/O input/output interface for LV breaker resources

The I/O application module ressources are:

- 6 digital inputs that are self powered for either NO and NC dry contact or pulse counter
■ 3 digital outputs that are bistable relay (5 A maximum)
- 1 analog input for Pt100 temperature sensor.

Pre-defined applications

Pre-defined application adds new functions to the IMU in a simple way:
■ selection by the application rotary switch on the I/O, defining the application with pre-defined input/output assignment and wiring diagram.
■ no additional setting with the customer engineering tool required.
The resources not assigned to the pre-defined application are free for additional user-defined applications:

- cradle management

■ breaker operation

- light and load control

■ custom.

User-defined applications

User-defined applications are processed by the I/O in addition to the pre-defined application selected.
The user-defined applications are available depending on:

- the pre-defined application selected

■ the I/O resources (inputs and outputs) not used by the application.
The resources required by user-defined applications are assigned using the
customer engineering tool:

- protection
- control
- energy management
- monitoring.

Mounting

The I/O is a DIN rail mounting device.

Application rotary switch

The application rotary switch enables the selection of the pre-defined application. It has 9 positions and each position is assigned to a pre-defined application. The factory set position of the switch is pre-defined application 1.

Setting locking pad

The setting locking pad on the front panel of the I/O enables the setting of the I/O by the customer engineering tool.

Ceneral characteristics	
Environmental characteristics	
Conforming to standards	UL 508, UL 60950, IED 60950, 60947-6-2
Certification	cUIUs, GOST, FCC, CE
Ambient temperature	-20 to $+70^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+158{ }^{\circ} \mathrm{F}\right)$
Relative humidity	5-85 \%
Level of pollution	Level 3
Flame resistance	ULV0
Mechanical characteristics	
Shock resistance	$1000 \mathrm{~m} / \mathrm{s} 2$
Resistance to sinusoidal vibrations	$5 \mathrm{~Hz}<\mathrm{f}<8.4 \mathrm{~Hz}$
Electrical characteristics	
Resistance to electromagnetic discharge	Conforming to IEC/EN 61000-4-3
Immunity to radiated fields	$10 \mathrm{~V} / \mathrm{m}$
Immunity to surges	Conforming to IEC/EN 61000-4-5
Consumption	165 mA
Physical characteristics	
Dimensions	$71.7 \times 116 \times 70.6 \mathrm{~mm}(2.83 \times 4.56 \times 2.78$ in. $)$
Mounting	DIN rail
Weight	229.5 g (0.51 lb)
Degree of protection of the installed I/O application module	■ On the front panel (wall mounted enclosure): IP4x - IO parts: IP3x - Connectors: IP2x
Connections	Screw type terminal blocks
Technical characteristics - 24 V DC power supply	
Power supply type	Regulated switch type
Rated power	72 W
Input voltage	100-120 V AC for single phase 200-500 V AC phase-to-phase
PFC filter	With IEC 61000-3-2
Output voltage	24 V DC
Power supply out current	3 A
Note: it is recommended to use an UL listed/UL listed recognized limited voltage/Limited current or a class 2 power supply with a 24 VDC, 3 A maximum.	

Digital inputs

Digital input type
Self powered digital input with current limitations as per IEC 61131-2 type 2 standards (7 mA)
Input limit values at state 1 19.8-25.2 V DC, 6.1-8.8 mA
(close)
Input limit values at state $0 \quad 0-19.8 \mathrm{~V}$ DC, 0 mA
(open)
Maximum cable length $10 \mathrm{~m}(33 \mathrm{ft})$
Note: for a length greater than 10 m (33 ft) and up to 300 m (1,000 ft), it is mandatory to use a shielded twisted cable. The shield cable is connected to the I/O functional ground of the I/O application module.

Digital outputs	Bistable relay
Digital output type	5 A at 250 V AC
Rated load	5 A
Rated carry current	$380 \mathrm{~V} \mathrm{AC}, 125 \mathrm{~V} \mathrm{DC}$
Maximum switching voltage	5 A
Maximum switch current	$1250 \mathrm{VA}, 150 \mathrm{~W}$
Maximum switching power	10 mA at 5 V DC
Minimum permissible load	$30 \mathrm{~m} \Omega$
Contact resistance	$\boxed{\square} 18000$ operations/hr (Mechanical)
Maximum operating frequency	
Digital output relay protection	External fuse of 5 A or less
by an external fuse	10 m (33 ft)
Maximum cable length	
Analog inputs	

Analog inputs

The I/O application module analog input can be connected to a Pt100 temperature sensor

Range	-30 to $200{ }^{\circ} \mathrm{C}$	-22 to $392{ }^{\circ} \mathrm{F}$
Accuracy	$\pm 2^{\circ} \mathrm{C}$ from -30 to $20^{\circ} \mathrm{C}$	$\pm 3.6^{\circ} \mathrm{F}$ from -22 to $68{ }^{\circ} \mathrm{F}$
	$\pm 1^{\circ} \mathrm{C}$ from 20 to $140^{\circ} \mathrm{C}$	$\pm 1.8^{\circ} \mathrm{F}$ from 68 to $284{ }^{\circ} \mathrm{F}$
	$\pm 2{ }^{\circ} \mathrm{C}$ from 140 to $200^{\circ} \mathrm{C}$	$\pm 3.6^{\circ} \mathrm{F}$ from 284 to $392{ }^{\circ} \mathrm{F}$
Refresh interval	5 s	5 s

Functions and characteristics

Connection of the IFE to a fixed or drawout Masterpact NT/NW

Connect the IFE to a fixed electrically operated Masterpact NT/NW or circuit breaker using the breaker ULP cord

A IFE Ethernet interface for LV circuit breaker
B Breaker ULP cord
(C) Fixed terminal block

D BCM ULP communication module
E Fixed electrically operated circuit breaker

Connect the IFE to a drawout Masterpact NT/NW or circuit breaker using the breaker ULP cord

A IFE Ethernet interface for LV circuit breaker
B ULP cable
C Breaker ULP cord
(D) Circuit breaker disconnected position contact (CD)

E Circuit breaker cradle
© BCM ULP communication module
(G) Drawout circuit breaker
(H) Drawout terminal block
(1) Circuit breaker connected position contact (CE)
(J) Circuit breaker test position contact (CT)
© I/O (Input/Output) application module for LV circuit breaker

Connection of the IFM to a fixed or drawout Masterpact NT/NW

Functions and characteristics

Introduction

Electrical Asset Manager is a software application that helps the user to manage a project as part of designing, testing, site commissioning, and maintenance of the project life cycle.
It enables the user to prepare the settings of the devices offline (without connecting to the device) and configure them when connected with the devices.
Also it provides lot of other value added features for the user to manage the project such as, safe repository in cloud, attach artifacts to each device or at the project level, organize devices in switchboard wise, manage a hierarchical structure of the installation etc.

Compatible devices (configuration and device management)
Electrical Asset Manager is compatible with the following devices:
- Compact NSX100-630 (IEC)
■ PowerPactTM (UL) circuit breaker
■ Compact NS630b-3200 (IEC)
■ Masterpact NT/NW (IEC and UL) circuit breaker
- Acti9 Smartlink.
- Compatible devices (Device Management in the project)
- Switch disconnectors (Compact NSX, Masterpact \& PowerPact Family)
■ Third party devices.

References:

Electrical Asset Manager software package can be downloaded from our website www.schneider-electric.com.

Features

Electrical Asset Manager supersedes the Schneider Electric customer engineering tools such as Remote setting Utility (RSU) and Remote Control Utility (RCU) with additional features.
Electrical Asset Manager supports the connection of Schneider Electric communicable devices to:

- create projects by device discovery, selection of devices, and import Bill of

Material (BOM)
■ monitor the status of protection and IO status
■ read information (alarms, measurements, parameters)

- check protection discrimination between two devices

■ upload and download of configuration or settings in batch mode to multiple devices.
■ carry out commands and tests

- generate and print device settings report and communication test report
- manage multiple devices with electrical and communication hierarchy model
- manage artifacts (project documents)

■ check consistency in settings between devices on a communication network

- compare configuration settings between PC and device (online)

■ download latest firmware.
Electrical Asset Manager enables the user to avail the advanced features of the software once the project is saved in Schneider Electric cloud.

Schneider

Functions

Offline Mode

A project can be built in offline mode through 2 different ways:

- through BOM file import
- through Device Selection

Additionally, the user can open an existing project and modify the settings offline. The user can do the discrimination curve check and firmware compatibility check for devices in the project.

Online Mode

A project can be built in online mode through device discovery also other than the methods possible through offline method.
Once the project is built, the following functions can be performed in addition to the functions available in offline mode:

- compare the device parameters with project parameters

■ load parameters from project to the device and vice versa

- firmware downloads to the device

■ monitor the measurement, maintenance, device status and I/O status

- control functions.

User Interface

Electrical Asset Manager software provides fast direct access to the project and the devices in the project through different tabs.
■ Project: to provide the project information including customer details, project references and to add project artifacts (documents related to the project).
■ Configuration: to build up the tree structure of the project architecture ; to have a table view of the devices added in the project ; to set the parameters of the devices ; to transfer the device settings ; to view the tripping curves; to attach device artifacts and to download the latest firmware, to do the communication test for all the devices and generate the test report.
■ Monitoring: this allows the user to monitor the real time values of different devices through different sub tabs namely Monitoring, Logs and Control.
■ Reports: report tab allows you to generate and print a report of the project settings from the report tab. The user details and project characteristics are automatically filled with the details entered in the Project page.

Functions

 and characteristicsMounting Versions and Connections
Overview of solutions

Three types of connection are available:

- vertical or horizontal rear connection
- front connection
\square mixed connection.
The solutions presented are similar in principle for all Masterpact NT and NW fixed and drawout devices.

The drawout version is prefered in most of the applications due to its following benefits:

- visible separation of the power contacts via racking out

■ easy and complete access to the device for periodic maintenance
$■$ possibility of a quick replacement of the device if necessary.
Rear connection

Simply turn a horizontal rear connector 90° to make it a vertical connector. For the 6300 A circuit breaker, only vertical connection is available.
Front connection

Front connection is available for NW fixed and drawout versions up to 3200 A Mixed connection

Note: Masterpact circuit breakers can be connected indifferently with bare-copper, tinned-copper and tinned-aluminium conductors, requiring no particular treatment.

Accessories

Type of accessory	Masterpact NT06 to NT16				Masterpact NW08 to NW63			
	Fixed Front connection	Rear connection	Drawout Front connection	Rear connection	Fixed Front connection	Rear connection	Drawout Front connection	Rear connection
Vertical connection adapters	$\begin{aligned} & \text { \% } \\ & \text { (4) } \end{aligned}$		$\begin{aligned} & \circ \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ (4)					
Cable lug adapters	(4)		(4)					
Interphase barriers				(1)		(2)		
Spreaders			(4)					
Disconnectable front-connection adapter						-		
Safety shutters with padlocking							standard	
Shutter position indication and locking								
Arc chute screen	 (3)	$\begin{aligned} & \text { 高 } \\ & \frac{6}{6} \\ & \stackrel{\rightharpoonup}{5} \\ & \stackrel{y}{\circ} 5 \end{aligned}$						

(1) Mandatory for voltages $\geqslant 500 \mathrm{~V}$, not compatible with spreaders.
(2) Except for an NW40 equipped for horizontal rear connection, and for fixed NW40b-NW63.
(3) Mandatory for fixed NT front-connection versions with vertical-connection adapters oriented towards
the front.
(4) Spreaders, vertical connection adapters and cable lugs adapters are not compatible with voltages $\geqslant 500 \mathrm{~V}$.

Masterpact M replacement kit

A set of connection parts is available to allow replacement of a Masterpact M08 to M32 circuit breaker by a Masterpact NW without modifying the busbars (please consult us).

Mounting on a switchboard backplate using special brackets

Masterpact NT and NW fixed front-connected circuit breakers can be installed on a backplate without any additional accessories
Masterpact NW circuit breakers require a set of special brackets.

Functions

 and characteristics
Connections

Accessories

Vertical-connection adapters (option)

Mounted on front-connected devices or chassis, the adapters facilitate connection to a set of vertical busbars.

Cable-lug adapters (option)

Cable-lug adapters are used in conjunction with vertical-connection adapters.
They can be used to connect a number of cables fitted with lugs.
To ensure adequate mechanical strength, the connectors must be secured together via spacers (catalogue number 04691).

Interphase barriers (option)

These barriers are flexible insulated partitions used to reinforce isolation of connection points in installations with busbars, whether insulated or not. For Masterpact NT/NW devices (up to NW40), they are installed vertically between rear connection terminals. They are mandatory for NT devices at voltages $>500 \mathrm{~V}$. They are not compatible with spreaders.

Spreaders (option)

Mounted on the front or rear connectors, spreaders are used to increase the distance between bars in certain installation configurations.

Arc chute screen (option)

For fixed Masterpact NT front-connection versions and with vertical-connection adapters oriented towards the front, an arc chute screen must be installed to respect safety clearances.

The arc chute screen is delivered in standard on the NT and NW drawout version.

Disconnectable front-connection adapter (option)

Mounted on a fixed front-connected device, the adapter simplifies replacement of a fixed device by enabling fast disconnection from the front.

Safety shutters (VO standard)

Mounted on the chassis, the safety shutters automatically block access to the disconnecting contact cluster when the device is in the disconnected or test positions (degree of protection IP 20) When the device is removed from its chassis, no live parts are accessible
The shutter-locking system is made up of a moving block that can be padlocked (padlock not supplied). The block:

- prevents connection of the device
- locks the shutters in the closed position.

For Masterpact NW08 to NW63

A support at the back of the chassis is used to store the blocks when they are not used:
■ 2 blocks for NW08 to NW40

- 4 blocks for NW40b to NW63.

Shutter position indication and locking on front face (VIVC, NW only)

This option located on the chassis front plate indicates that the shutters are closed. It is possible to independently or separately padlock the two shutters using one to three padlocks (not supplied).

Access to pushbuttons protected by transparent cover.

Pushbutton locking using a padlock.

OFF position locking using a padlock.

[^5]

Pushbutton locking VBP

The transparent cover blocks access to the pushbuttons used to open and close the device.
It is possible to independently lock the opening button and the closing button.
The locking device is often combined with a remote operating mechanism.
The pushbuttons may be locked using either:
■ padlock (not supplied), 5 to 8 mm

- lead seal
- two screws.

Device locking in the OFF position VCPO by padlocks, VSPO by keylocks

The circuit breaker is locked in the OFF position by physically maintaining the opening pushbutton pressed down:

- using padlocks (one to three padlocks, not supplied), shackle diameter: 5 to 8 mm ■ using keylocks (one or two different keylocks, supplied).
Keys may be removed only when locking is effective (Profalux or Ronis type locks).
The keylocks are available in any of the following configurations:
■ one keylock
- one keylock mounted on the device + one identical keylock supplied separately for interlocking with another device
■ two different key locks for double locking.
Profalux and Ronis keylocks are compatible with each other.
A locking kit (without locks) is available for installation of one or two keylocks (Ronis, Profalux, Kirk or Castell).

Accessory-compatibility

For Masterpact NT: 3 padlocks or 1 keylock.
For Masterpact NW: 3 padlocks and/or 2 keylocks.

Cable-type door interlock IPA

This option prevents door opening when the circuit breaker is closed and prevents circuit breaker closing when the door is open.
For this, a special plate associated with a lock and a cable is mounted on the right side of the circuit breaker.
With this interlock installed, the source changeover function cannot be implemented.
This option is identical for fixed and drawout version.

On the chassis

"Disconnected" position locking by padlocks (standard) or keylocks (VSPD option)

Mounted on the chassis and accessible with the door closed, these devices lock the circuit breaker in the "disconnected" position in two manners:
■ using padlocks (standard), up to three padlocks (not supplied)
■ using keylocks (optional), one or two different keylocks are available.
Profalux and Ronis keylocks are available in different options:
■ one keylock
■ two different keylocks for double locking
■ one (or two) keylocks mounted on the device + one (or two) identical keylocks supplied separately for interlocking with another device.
A locking kit (without locks) is available for installation of one or two keylocks (Ronis, Profalux, Kirk or Castell).

"Connected", "disconnected" and "test" position locking

The "connected", "disconnected" and "test" positions are shown by an indicator andc are mechanically indexed. The exact position is obtained when the racking handle blocks. A release button is used to free it.
As standard, the circuit breaker can be locked only in "disconnected position". On request, the locking system may be modified to lock the circuit breaker in any of the three positions: "connected", "disconnected" or "test".

Door interlock catch VPEC

Mounted on the right or left-hand side of the chassis, this device inhibits opening of the cubicle door when the circuit breaker is in "connected" or "test" position. It the breaker is put in the "connected" position with the door open, the door may be closed without having to disconnect the circuit breaker.

Racking interlock VPOC

This device prevents insertion of the racking handle when the cubicle door is open.

Cable-type door interlock IPA

This option is identical for fixed and drawout versions.

Racking interlock between crank and OFF pushbutton IBPO (for NW only)

This option makes it necessary to press the OFF pushbutton in order to insert the racking handle and holds the device open until the handle is removed.

Automatic spring discharge before breaker removal DAE (for NW only)

This option discharges the springs before the breaker is removed from the chassis.

Mismatch protection VDC

Mismatch protection ensures that a circuit breaker is installed only in a chassis with compatible characteristics. It is made up of two parts (one on the chassis and one on the circuit breaker) offering twenty different combinations that the user may select.

Functions and characteristics

Indication contacts

Indication contacts are available:
■ in the standard version for relay applications \square in a low-level version for control of PLCs and electronic circuits.
M2C and M6C contacts may be programmed via the Micrologic E, P and H control units.

ON/OFF indication contacts (OF) (rotary type).

ON/OFF indication contacts (OF) (micro switch type).

Additional "fault-trip" indication contacts (SDE)

Combined contacts.

ON/OFF indication contacts OF

Two types of contacts indicate the ON or OFF position of the circuit breaker:

- micro switch type changeover contacts for Masterpact NT
- rotary type changeover contacts directly driven by the mechanism for Masterpact NW. These contacts switch when the minimum isolation distance between the main circuit breaker contacts is reached. These rotary type changeover contacts are used for both standard and low level versions for Masterpact NW.

(1) Standard contacts: 10 A; optional contacts: 6 A.

"Fault-trip" indication contacts SDE

Circuit breaker tripping due to a fault is signalled by:
■ a red mechanical fault indicator (reset)

- one changeover contact SDE.

Following tripping, the mechanical indicator must be reset before the circuit breaker may be closed. One SDE is supplied as standard. An optimal SDE may be added. This latter is incompatible with the electrical reset after fault-trip option (RES).

SDE			NT/NW
Supplied as standard			1
Maximum number			2
$\begin{aligned} & \text { Breaking capacity (A) } \\ & \text { p.f.: } 0.3 \\ & \text { AC12/DC12 } \end{aligned}$	Standard		Minimum load: $100 \mathrm{~mA} / 24 \mathrm{~V}$
	VAC	240/380	6
		480	2
	VDC	24/48	3
		125	0.3
		250	0.15
	Low-level		Minimum load: $2 \mathrm{~mA} / 15 \mathrm{~V}$
	V AC	24/48	3
		240	3
		380	3
	V DC	24/48	3
		125	0.3
		250	0.15

Combined "connected/closed" contacts EF
The contact combines the "device connected" and the "device closed" information to produce the "circuit closed" information. Supplied as an option for Masterpact NW, it is mounted in place of the connector of an additional OF contact.

EF			NW
Maximum number			8
Breaking capacity (A)	Standard		Minimum load: $100 \mathrm{~mA} / 24 \mathrm{~V}$
p.f.: 0.3	V AC	240/380	6
AC12/DC12		480	6
		690	6
	VDC	24/48	2.5
		125	0.8
		250	0.3
	Low-level		Minimum load: $2 \mathrm{~mA} / 15 \mathrm{~V}$
	VAC	24/48	5
		240	5
		380	5
	VDC	24/48	2.5
		125	0.8
		250	0.3

CE, CD and CT "connected/disconnected/test" position carriage switches.

M2C programmable contacts: circuit breaker internal relay with two contacts.

M6C programmable contacts:
circuit breaker external relay with six independent changeover contacts controlled from the circuit breaker via a three-wire connection. (maximum length is 10 meters).

"Connected", "disconnected" and "test" position carriage switches

Three series of optional auxiliary contacts are available for the chassis:
■ changeover contacts to indicate the "connected" position CE

- changeover contacts to indicate the "disconnected" position CD. This position is indicated when the required clearance for isolation of the power and auxiliary circuits is reached
■ changeover contacts to indicate the "test" position CT. In this position, the power circuits are disconnected and the auxiliary circuits are connected.

Additional actuators

A set of additional actuators may be installed on the chassis to change the functions of the carriage switches.

M2C / M6C programmable contacts

These contacts, used with the Micrologic E, P and H control units, may be programmed via the control unit keypad or via a supervisory station with the COM communication option. They require an external power supply module.
The M2C (two contacts) and M6C (six contacts) auxiliary contacts may be used to signal threshold overruns or status changes. They can be programmed using the keypad on the Micrologic P control unit or remotely using the COM option (BCM ULP).

Micrologic		Type E	Types P, H	
Characteristics		M2C	M2C / M6C	
Minimum load		$100 \mathrm{~mA} / 24 \mathrm{~V}$	$100 \mathrm{~mA} / 24 \mathrm{~V}$	
Breaking capacity (A)	VAC 240	5	5	
p.f.: 0.7		380	3	3
	VDC	24	1.8	1.8
		48	1.5	1.5
		125	0.4	0.4
		250	0.15	0.15

M6C: external 24 V DC power supply required (consumption 100 mA).

Functions and characteristics

Remote operation

Remote ON / OFF

Two solutions are available for remote operation of Masterpact devices:
■ a point-to-point solution

- a bus solution with the COM communication option.

Note: an opening order always takes priority over a closing order.

If opening and closing orders occur simultaneously, the mechanism discharges without any movement of the main contacts. The circuit breaker remains in the open position (OFF).
In the event of maintained opening and closing orders, the standard mechanism provides an anti-pumping function by blocking the main contacts in open position.
Anti-pumping function. After fault tripping or intentional opening using the manual or electrical controls, the closing order must first be discontinued, then reactivated to close the circuit breaker.
When the automatic reset after fault trip (RAR) option is installed, to avoid pumping following a fault trip, the automatic control system must take into account the information supplied by the circuit breaker before issuing a new closing order or blocking the circuit breaker in the open position (information on the type of fault, e.g. overload, short-time fault, earth fault, earth leakage, short-circuit, etc.).

Note: MX communicating releases are of the impulse type only and cannot be used to lock a circuit breaker in OFF position. For locking in OFF position, use the remote tripping function (2nd MX or MN)
When MX or XF communicating releases are used, the third wire (C3, A3) must be connected even if the communication module is not installed. When the control voltage (C3-C1 or A3-A1) is applied to the MX or XF releases, it is necessary to wait 1.5 seconds before issuing an order. Consequently, it is advised to use standard MX or XF releases for applications such as source-changeover systems.

The remote ON / OFF function is used to remotely open and close the circuit breaker. It is made up of:
■ an electric motor MCH equipped with a "springs charged" limit switch contact CH
■ two voltage releases:
\square a closing release XF
\square an opening release MX.
Optionally, other functions may be added:
■ a "ready to close" contact PF

- an electrical closing pushbutton BPFE
- remote RES following a fault.

A remote-operation function is generally combined with:
■ device ON / OFF indication OF
■ "fault-trip" indication SDE.

Wiring diagram of a point-to-point remote ON / OFF function

Wiring diagram of a bus-type remote ON / OFF function

Electric motor MCH for Masterpact NT.

Electric motor MCH for Masterpact NW.

XF and MX voltage releases.

"Ready to close" contacts PF.

Electric motor MCH

The electric motor automatically charges and recharges the spring mechanism when the circuit breaker is closed. Instantaneous reclosing of the breaker is thus possible following opening. The spring-mechanism charging handle is used only as a backup if auxiliary power is absent.
The electric motor MCH is equipped as standard with a limit switch contact CH that signals the "charged" position of the mechanism (springs charged).

Characteristics	
Power supply VAC 50/60 Hz	$48 / 60-100 / 130-200 / 240-277-380 / 415-400 / 440-480$
	$24 / 30-48 / 60-100 / 125-200 / 250$
Operating threshold	0.85 to 1.1 Un
Consumption (VA or W)	180
Motor overcurrent	2 to 3 In for 0.1 s
Charging time	maximum 3 s for Masterpact NT
	maximum 4 s for Masterpact NW
Operating frequency	maximum 3 cycles per minute
CH contact	10 A at 240 V

Voltage releases XF and MX

Their supply can be maintained or automatically disconnected.

Closing release XF

The XF release remotely closes the circuit breaker if the spring mechanism is charged.
Opening release MX
The MX release instantaneously opens the circuit breaker when energised, the minimum duration of the pulse operating order must be 200 ms . The MX release locks the circuit breaker in OFF position if the order is maintained (except for MX "communicating" releases).
Note: whether the operating order is maintened or automatically disconnected (pulse-type), XF or MX "communicating" releases ("bus" solution with "COM" communication option) always have an impulse-type action (see diagram).

Characteristics	XF	MX
Power supply \quad VAC $50 / 60 \mathrm{~Hz}$	$24-48-100 / 130-200 / 250-277-380 / 480$	
	V DC	$12-24 / 30-48 / 60-100 / 130-200 / 250$
Operating threshold	0.85 to 1.1 Un	0.7 to 1.1 Un
Consumption (VA or W)	Hold: 4.5	Hold: 4.5
	Pick-up: $200(200 \mathrm{~ms})$	Pick-up: $200(200 \mathrm{~ms})$
Circuit breaker	$55 \mathrm{~ms} \pm 10($ Masterpact NT $)$	$50 \mathrm{~ms} \pm 10$
response time at Un	$70 \mathrm{~ms} \pm 10(\mathrm{NW} \leqslant 4000 \mathrm{~A})$	
	$80 \mathrm{~ms} \pm 10(\mathrm{NW}>4000 \mathrm{~A})$	

"Ready to close" contact PF

The "ready to close" position of the circuit breaker is indicated by a mechanical indicator and a PF changeover contact. This signal indicates that all the following are valid:
■ the circuit breaker is in the OFF position

- the spring mechanism is charged
- a maintained opening order is not present:
$\square \mathrm{MX}$ energised
- fault trip
\square remote tripping second MX or MN
\square device not completely racked in
- device locked in OFF position
\square device interlocked with a second device.

Characteristics			NT/NW
Maximum number			1
Breaking capacity (A)	Standard		Minimum load: $100 \mathrm{~mA} / 24 \mathrm{~V}$
p.f.: 0.3	VAC	240/380	5
AC12/DC12		480	5
		690	3
	VDC	24/48	3
		125	0.3
		250	0.15
	Low-level		Minimum load: $2 \mathrm{~mA} / 15 \mathrm{~V}$
	VAC	24/48	3
		240	3
		380	3
	V DC	24/48	3
		125	0.3
		250	0.15

Electrical closing pushbutton BPFE

Located on the front panel, this pushbutton carries out electrical closing of the circuit breaker. It is generally associated with the transparent cover that protects access to the closing pushbutton.
Electrical closing via the BPFE pushbutton takes into account all the safety functions that are part of the control/monitoring system of the installation.
The BPFE connects to the closing release (XF com) in place of the COM module.
The COM module is incompatible with this option.
Different types of voltage exist and the XF electromagnet is compulsary if the BPFE option is selected.

Remote reset after fault trip

Electrical reset after fault trip RES

Following tripping, this function resets the "fault trip" indication contacts SDE and the mechanical indicator and enables circuit breaker closing.
Power supply: 110/130 V AC and 200/240 V AC.
The use of XF closing release is compulsory with this option.
The additional "Fault Trip" indication contact SDE2 is not compatible with RES

Automatic reset after fault trip RAR

Following tripping, a reset of the mechanical indicator (reset button) is no longer required to enable circuit breaker closing. The mechanical (reset button) and electrical SDE indications remain in fault position until the reset button is pressed. The use of XF closing release is compulsory with this option.

Remote tripping

MX or MN voltage release.

This function opens the circuit breaker via an electrical order. It is made up of:

- a shunt release second MX
- or an undervoltage release MN
\square or a delayed undervoltage release MNR: MN + delay unit.
These releases ($2^{\text {nd }} M X$ or $M N$) cannot be operated by the communication bus. The delay unit, installed outside the circuit breaker, may be disabled by an emergency OFF button to obtain instantaneous opening of the circuit breaker.

Wiring diagram for the remote-tripping function

Voltage releases second MX

When energised, the MX voltage release instantaneously opens the circuit breaker A continuous supply of power to the second MX locks the circuit breaker in the OFF position.

Characteristics			
Power supply	VAC 50/60Hz	$24-48-100 / 130-200 / 250-277-380 / 480$	
	VDC	$12-24 / 30-48 / 60-100 / 130-200 / 250$	
Operating threshold	0.7 to 1.1 Un		
Permanent locking function	0.85 to 1.1 Un	Hold: 4.5	
Consumption (VA or W)	Pick-up: $200(80 \mathrm{~ms})$		
Circuit breaker response time at Un	50 ms ± 10		

Instantaneous voltage releases MN

The MN release instantaneously opens the circuit breaker when its supply voltage drops to a value between 35% and 70% of its rated voltage. If there is no supply on the release, it is impossible to close the circuit breaker, either manually or electrically. Any attempt to close the circuit breaker has no effect on the main contacts. Circuit breaker closing is enabled again when the supply voltage of the release returns to 85% of its rated value.

MN delay units

To eliminate circuit breaker nuisance tripping during short voltage dips, operation of the MN release can be delayed. This function is achieved by adding an external delay unit in the MN voltage-release circuit. Two versions are available, adjustable and non-adjustable.

Functions

 and characteristics

Escutcheon CDP with blanking plate.

Transparent cover CCP for escutcheon.

Grounding kit KMT.

Auxiliary terminal shield CB

Optional equipment mounted on the chassis, the shield prevents access to the terminal block of the electrical auxiliaries.

Accessories

Operation counter CDM

The operation counter sums the number of operating cycles and is visible on the front panel. It is compatible with manual and electrical control functions.
This option is compulsory for all the source-changeover systems.

Escutcheon CDP

Optional equipment mounted on the door of the cubicle, the escutcheon increases the degree of protection to IP 40 (circuit breaker installed free standing: IP30). It is available in fixed and drawout versions.

Blanking plate OP for escutcheon

Used with the escutcheon, this option closes off the door cut-out of a cubicle not yet equipped with a device. It may be used with the escutcheon for both fixed and drawout devices.

Transparent cover CCP for escutcheon

Optional equipment mounted on the escutcheon, the cover is hinged and secured by a screw. It increases the degree of protection to IP54, IK10. It adapts to drawout devices.

Grounding kit KMT

This option allows the grounding of the breaker mechanism while the front cover is removed. The grounding is made via the chassis for the drawout version and via the fixation side plate for the fixed version.

Source-changeover systems Presentation

Some installations use two supply sources to counter the temporary loss of the main supply.
A source-changeover system is required to safely switch between the two sources. The replacement source can be a generator set or another network.

Manual source-changeover system or M: Manual Transfer Switching Equipment

The simplest way to switch the load.
It is controlled manually by an operator.
The time required to switch from the S1 source to S2 source is variable.

System

2 or 3 mechanically interlocked circuit breakers or switch-disconnectors.

Applications

Small commercial buildings and small and medium industrial activities where the need for continuity of service is significant but not a priority.

Automatic source-changeover system or A: Automatic Transfer Switching Equipment

A controller may be added to automatically control the operation of a changeover system. This may be achieved either by means of a dedicated ready to use controler (UC-BC) or by a traditonal programmable logic controler (PLC).
These solutions ensure optimum energy management.
The time required to switch from the S1 source to S2 source is fixed.

System

2 or 3 circuit breakers or switch-disconnectors linked by an electrical interlocking system. A mechanical interlocking system protects also against incorrect manual operations, with an automatic control system (dedicated controllers).

Applications

Large infrastructures, industry, critical buildings \& process where the continuity of service is a priority.

Interlocking of devices

Mechanical interlocking

Interlocking of two Masterpact NT or NW circuit breakers using connecting rods.

Schneider Electric offers source change-over systems based on Masterpact NT and NW devices
They are made of up to 3 circuit breakers or switch-disconnetors linked by an electrical interlocking system that may have different configurations. Moreover, a mechanical interlocking system must be added to protect against electrical malfunctions or incorrect manual operations. In addition, a controller can be used for automatically control the source transfer.
The following pages present the different solutions for mechanical and electrical interlocking and associated controllers.

For implementing the mechanical interlocking 2 different possibilities are offered : ■ interlocking with rods
■ interlocking with cables.

Interlocking of two Masterpact NT or NW devices using connecting rods

The two devices must be mounted one above the other (either 2 fixed or 2 drawout devices).
Combinations are possible between Masterpact NT and between Masterpact NW devices.

Installation

This function requires:
■ an adaptation fixture on the right side of each circuit breaker or
switch-disconnector
■ a set of connecting rods with no-slip adjustments
■ the use of a mecahnical operation counter is mandatory.
The adaptation fixtures, connecting rods, circuit breakers and switch-disconnectors are supplied separately, ready for assembly by the customer.
The maximum vertical distance between the fixing planes is 900 mm .

Interlocking of two Masterpact circuit breakers using cable.

Interlocking of two Masterpact circuit breakers using cable.
(1) for more details please contact your local support.

Note: for cable length higher than 2,5m please consult us before ordering the circuit breakers for a customised solution.
See catalogue "Source changeover systems", ref. LVPED211022EN.

Interlocking of two Masterpact NT/NW or up to three Masterpact NW devices using cables

For cable interlocking, the circuit breakers may be mounted one above the other or side-by-side.
The interlocked devices may be fixed or drawout, three-pole or four-pole, and may have different ratings and sizes.
Interlocking between two Masterpact NT or NW
This function requires:

- an adaptation fixture on the right side of each device

■ a set of cables without slip adjustments

- the use of a mechanical operation counter CDM is mandatory

The maximum distance between the fixing planes (vertical or horizontal) is 2000 mm .
Interlocking between three Masterpact NW
This function requires:
■ a specific adaptation fixture installed on the right side of each device
■ two sets of cables without slip adjustments

- the use of a mechanical operation counter CDM is mandatory.

The maximum distance between the fixing planes (vertical or horizontal) is 1000 mm .

Installation

The adaptation fixtures, sets of cables and circuit breakers or switch-disconnectors are supplied separately, ready for assembly by the customer.
Installation conditions for cable interlocking systems:
■ cable length: 2.5 m

- radius of curvature: 100 mm
- maximum number of curves: 3 .

Possible combinations of "Normal" and "Replacement" source circuit breakers

"Normal N"	"Replacement" R		
	NT06 to NT16	NW08 to NW40	NW40b to NW63
NT06 to NT16			
Ratings 250... 1600 A	■	-	-
NW08 to NW40			
Ratings 320... 4000 A	-	-	-
NW40b to NW63			
Ratings 4000...6300 A	-	-	-

All combinations of two Masterpact NT and Masterpact NW devices are possible, whatever the rating or size of the devices.

Possible combinations of three device

	NT06 to NT16	NW08 to NW40	NW40b to NW63
NT06 to NT16			
Ratings 250... 1600 A			
NW08 to NW40			
Ratings 320... 4000 A		■	■
NW40b to NW63			
Ratings 4000... 6300 A		■	■

Only Masterpact NW may be used for three-device combinations.

Types of mechanical interlocking and combinations

Choice criteria

In the applications where the continuity of service is critical ${ }^{(1)}$ (data centers, airports, hospitals, marine, oil \& gas, process industry, ...) the mechanical interlocking by rods and the drawout version devices are strongly recommended.
Mechanical interlocking by rods is preferred as less energy is consumed by friction, so it has less effect on the circuit breaker closing energy.
In terms of breaker mounting type, the drawout version is preferred as :
■ it provides mechanical isolation of the circuit breaker from possible external stress
on the terminals by having a flexible connection at the clusters level
■ it allows simple and total access for periodic maintenance

- it allows quick replacement of the device if necessary.

When not possible, cable interlocking or fixed versions can be used, but the installation rules detailed in the 2 sections below must be strictly respected and mainly:
■ the busbars or the cables used for the power connections must apply no stress on the circuit breakers terminals. Their weight must be supported by the switchboard frame.
Please refer to the "Switchboard integration - Installation rules - Power connection" section in this catalogue as well as to the Data Bulletin "Installation of Fixed Masterpact NW Circuit Breakers in Electrical Equipment - Class 0613" available on www.schneider-electric.com for more details.

Electrical interlocking
 IVE unit

Electrical interlocking is used with a mechanical interlocking system

Morover, the relays controlling the closing order to the "S1" and "S2" circuit breakers must be mechanically and/or electrically interlocked to prevent them from giving simultaneous closing commands.

Electrical interlocking is carried out by an electrical control device.
For Masterpact, this function can be implemented in one of two ways:
■ using the IVE unit
■ by an electrician based on the diagrams in accordance with the chapter "Electric diagrams" of this catalogue.

Characteristics of the IVE unit

■ External connection terminal block:
\square inputs: circuit breaker control signals

- outputs: status of the SDE contacts on the "S1" and "S2" source circuit breakers
- 2 connectors for the two "S1" and "S2" source circuit breakers:
- inputs:
- status of the OF contacts on each circuit breaker (ON or OFF)
- status of the SDE contacts on the "S1" and "S2" source circuit breakers
\square outputs: power supply for operating mechanisms.
■ Control voltage:
- 24 to 250 V DC
- 48 to $415 \mathrm{~V} 50 / 60 \mathrm{~Hz}-440 \mathrm{~V} 60 \mathrm{~Hz}$.

The IVE unit control voltage must be same as that of the circuit breaker operating mechanisms.

IVE unit.

Necessary equipment

For Masterpact NT and NW, each circuit breaker must be equipped with:
■ a remote-operation system made up of:
\square MCH gear motor
\square MX or MN opening release
\square XF closing release

- PF "ready to close" contact
\square CDM mechanical operation counter
■ an available OF contact
■ one to three CE connected-position contacts (carriage switches) on drawout
circuit breakers (depending on the installation)

Controller selection

By combining a remote-operated source-changeover system with an integrated BA or UA automatic controller, it is possible to automatically control source transfer according to user-selected sequences
These controllers can be used on source-changeover systems comprising 2 circuit breakers.
For source-changeover systems comprising 3 circuit breakers, the automatic control diagram must be prepared by the installer as a complement to to diagrams provided in the "electrical diagrams" section of this catalogue.

BA controller.

UA controller.

(1) For example, 220 V single-phase or 220 V three-phase.
(2) The controller is powered by the ACP control plate. The same voltage must be used for the ACP plate, the IVE unit and the circuit-breaker operating mechanisms. If this voltage is the same as the source voltage, then the "Normal" and "Replacement" sources can be used directly for the power supply. If not, an isolation transformer must be used.

[^6]
Masterpact NW with corrosion protection 800-4000 A

Masterpact NW circuit breakers with corrosion protection are designed for use in industrial environments with high concentrations of sulphur compounds. Examples include paper mills, oil refineries, steel works and water treatment plants, all of which produce large quantities of sulphur dioxide (SO2) or hydrogen sulphate (H2S). Under such conditions, silver-plated parts rapidly turn black due to the formation of silver sulphate (AgS) on the surface, an insulating material that can lead to abnormal temperature rise in electrical contacts. This phenomenon can have serious consequences on all equipment installed inside a switchboard.
Circuit breakers used in such environments generally require frequent maintenance and therefore a large number of replacement devices on the site. Furthermore, problems are often encountered even with intensive maintenance.
Masterpact NW circuit breakers with corrosion protection receive special surface treatment on all parts exposed to corrosion and critical with respect to electrical continuity. In this way, the availability of electrical power and operating safety are ensured without special maintenance for the following environmental condition classes as defined by standard IEC 721-3-3:

- 3C3 for H 2 S (concentrations from 2.1 to 7.1×10^{-6})

■ 3C4 for SO2 (concentrations from 4.8 to 14.8×10^{-6}).
The Masterpact NW range of power circuit breakers with corrosion protection offers the following features:

- rated current from 800 A to 4000 A

■ 3 and 4-pole models

- drawout circuit breaker
- operational voltage up to 690 V AC
- Ics breaking capacity of 100 kA at $220 / 415 \mathrm{~V} \mathrm{AC}$
- reverse feed possible

■ stored-energy mechanism for instantaneous closing (source coupling).

- 3 types of RMS electronic protection

■ adjustable long-time settings from 0.4 to 1 In , with fine adjustment via local keypad or remote supervisor

- electronic functions dedicated to energy management and power-quality analysis.

The Masterpact NW range complies with the main standards and certifications

■ IEC 60947-1 and 60947-2
■ IEC 68230 (damp heat) and IEC 68252 severity level 2 (salt mist)
■ IEC 60068-2-42 and IEC 60068-2-43 for corrosive environments:

- SO2 : tested to IEC 60068-2-42 in a 3C4 environment as defined by

IEC 60721-3-3
\square H2S: tested to IEC 60068-2-43 in a 3C3 environment as defined IEC 60721-3-3.

A complete range of electrical accessories and auxiliaries

- Motor mechanism (MCH).
- Undervoltage release (MN, MNR).

■ Shunt trip unit (MX).

- Closing release (XF).
- Auxiliary contacts (OF).

■ Low-level indication contacts (SDE, PF, CD, CT, CE and EF).

- Electrical closing button (BPFE).
- Locking by padlocks and/or keylocks.

■ Source-changeover systems for 2 or 3 devices.

Maximum safety

The Masterpact NW range with corrosion protection offers the same safety features as the standard version:

- positive contact indication
- high impulse withstand voltage (12 kV)
- suitable for isolation in compliance with IEC 60947-2, as indicated by the disconnector symbol on the front face:
- front face insulation class 2, allowing class 2 installations with breaker control from outside.

Characteristics according to IEC 60 947-2

				NW08H2	NW10H2	NW12H2	NW16H2	NW2OH2	NW25H2	NW32H2	NW40bH2
Number of poles				3, 4							
Rated insulation voltage	Ui (V)			1000							
Rated operational voltage	Ue (V)			690							
Closing time (ms)				< 50							
Rated current	$\ln (\mathrm{A})$	Vertical connection	$40^{\circ} \mathrm{C}$	800	1000	1250	1600	2000	2500	3200	4000
			$45^{\circ} \mathrm{C}$	800	1000	1250	1600	2000	2500	3200	4000
			$50^{\circ} \mathrm{C}$	800	1000	1250	1600	2000	2500	3200	4000
			$55^{\circ} \mathrm{C}$	800	1000	1250	1550	1900	2500	3150	4000
			$60^{\circ} \mathrm{C}$	800	1000	1250	1500	1800	2500	3000	4000
		Horizontal connection	$40^{\circ} \mathrm{C}$	800	1000	1250	1600	2000	2500	-	4000
			$45^{\circ} \mathrm{C}$	800	1000	1250	1550	1900	2500	-	4000
			$50^{\circ} \mathrm{C}$	800	1000	1250	1500	1800	2500	-	4000
			$55^{\circ} \mathrm{C}$	800	1000	1250	1450	1700	2400	-	4000
			$60^{\circ} \mathrm{C}$	800	1000	1250	1400	1600	2300	-	3900
				800	1000	1250	1600	2000	2500	3200	4000
Rated utlimate breaking capacity	Icu (kArms) CA 50/60 Hz		$220 / 440 \mathrm{~V}$	100	100	100	100	100	100	100	150
			690 V	85	85	85	85	85	85	85	100
Rated service breaking capacity	Ics = Icu x ...			100 \%	100 \%	100 \%	100 \%	100 \%	100 \%	100 \%	100 \%
Break time (ms)			Total maxi	25 to 30 with no intentional delay							

Dimensions and connection

Masterpact NW08 to NW32 with corrosion protection.

Masterpact NW40b with corrosion protection.

Drawout device	L (mm)	H (mm)	P(mm)	
3P	4P			
800 to 3200 A	441	556	439	395
4000 A	786	1016	479	395

Connections

■ Power circuits:

\square vertical rear connections as standard
\square possibility of conversion to horizontal rear connections on-site by rotating
the connectors, except for NW32, available with vertical rear connections only
■ Auxiliaries connected to terminal block on circuit breaker front face.

Earthing switch Masterpact

The Masterpact Earthing Switch can be racked into any compatible Masterpact NW chassis in place of a Masterpact circuit breaker. It is used to interconnect and earth the phase and neutral conductors of an electrical installation to ensure the safety of personnel during servicing. It can be locked in earthed position.

Main characteristics	
Rated insulation voltage	1000 V
Rated operational voltage	690 V
Rated current	800 to 4000 A
Latching capacity	135 kA peak
Rated short-time withstand	$60 \mathrm{kA} / \mathrm{s} \mathrm{s}$
current	$50 \mathrm{kA} / \mathrm{s}$
Compatibility	Compatible with drawout NW08 to NW40 circuit breakers, types
	N1/H1/NA/HA, 3-pole and 4-pole rear connected versions
Remote indication	12 ON/OFF indication contacts that can be used according to
	the chassis auxiliary wiring

The Earthing Switch is compatible with Masterpact NW08 to NW40 type N1, H1, NA and HA circuit breakers in both 3-pole and 4-pole versions. It has two parts: - a chassis earthing kit for installation on the Masterpact NW chassis. Two different versions are available for 3 -pole and 4 -pole chassis.
\square the Earthing Switch itself, which is a specific Masterpact NW device that can be racked into any chassis equipped with an earthing kit, in place of the circuit breaker. Two versions are available (3-pole and 4-pole).
An earthing kit must be installed on the chassis of each circuit breaker protecting a circuit that may require earthing while work is being carried out. However, a single earthing switch is often sufficient for an entire installation if only one circuit is to be serviced at any given time.
The standard Earthing Switch comes with the short-circuit bar installed across the bottom (downstream) connections for earthing of the upstream portion of the circuit. The user can easily move the short-circuit bar to the top connections if the downstream portion of the circuit needs to be earthed.

Earthing switch (rear view)

With short-circuit bar on the bottom connections. With short-circuit bar on the top connections.

Locking in earthed position by 3 padlocks

The standard Earthing Switch can be locked in earthed position by one to three padlocks as long as the following conditions are satisfied:
■ the Earthing Switch must be in "connected" position in a chassis equipped with an earthing kit

- the Earthing Switch must be in "ON" position.

Under these conditions, the installation is earthed.
When the Earthing Switch is locked in earthed position:
■ it cannot be moved to "disconnected" position (a shutter prevents insertion of the racking handle)
■ it cannot be turned "OFF" (a shutter prevents access to the "OFF" pushbutton).

Prevents insertion of the racking

Functions

 and characteristics
Typical applications

The earthing switch is used to protect maintenance personnel working on an installation against the risk of accidental connection of a parallel source or energisation by reverse power. Protection is provided by earthing the part of the installation that is to be worked on.

Application $\mathrm{n}^{\circ} 1$

Earthing of one section of a coupled busbar arrangement

When working on section \mathbf{B}, the bus coupler is normally open. To protect personnel in the event of accidental closing of this device, an earthing switch with the upstream terminals earthed is installed in place of the circuit breaker at \mathbf{B}. In this way section \mathbf{B} will remain at earth potential under all circumstances and the personnel can work in complete safety.

When working on outgoer \mathbf{C}, installation of an earthing switch with the upstream terminals earthed (in place of the circuit breaker at C) ensures complete safety even if all the other devices on the installation are closed.

Application $n^{\circ} 3$
Earthing of an MV/LV transformer

When working on an MV/LV transformer, upstream earthing is carried out by means of the usual medium voltage and high voltage procedures. Installation of an earthing switch with the downstream terminals earthed (in place of the circuit breaker at \mathbf{B}) maintains the part of the installation between the upstream MV circuit breaker and the downstream LV circuit breaker at earth potential. In this way, the personnel can work in complete safety even if the rest of the installation is energised.

Dimensions and connection

schneider-electric.com

This international site allows you to access all the Schneider Electric Solution and Product information via : - comprehensive descriptions

- range data sheets
- a download area
- product selectors
- ...

You can also access the information dedicated to your business and get in touch with your Schneider Electric country support.

Schneider Electric			Slo	$\xrightarrow{\text { a }}$
	Products and Serices	Suppor	Your business	Company
		Ecostruxur		
5 Power Management	(10.) Pacens smacomen		(14) Bunno unomeseret	
			- Lighting Controt - Outdoor Lighting Control - Room Control	

Presentation 2
Functions and characteristics A-1
Operating conditions B-2
Installation in switchboard B-4
Door interlock catch B-6
Power connection B-8
Recommended busbars drilling
Masterpact NT06 to NT16 B-10
Masterpact NW08 to NW63 B-11
Busbar sizing B-12
Temperature derating
Power dissipation and input / output resistance B-14
Derating in switchboards B-15
Substitution kit
Fixed / drawout devices 800 to 3200 A B-22
Control wiring B-23
Masterpact M Retrofit B-24
Dimensions and connections C-1
Electrical diagrams D-1
Additional characteristicsE-1
Catalogue numbers and order form F-1

Installation recommendations

Operating conditions

Masterpact circuit breakers have been tested for operation in industrial atmospheres. It is recommended that the equipment be cooled or heated to the proper operating temperature and kept free of excessive vibration and dust.

Ambient temperature

Masterpact devices can operate under the following temperature conditions: - the electrical and mechanical characteristics are stipulated for an ambient temperature of $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

- circuit breaker closing is guaranteed down to $-35^{\circ} \mathrm{C}$ by manual operation (push button).
Storage conditions are as follows:
■ -40 to $+85^{\circ} \mathrm{C}$ for a Masterpact device without its control unit
- $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the control unit.

Extreme atmospheric conditions

Masterpact devices have successfully passed the tests defined by the following standards for extreme atmospheric conditions:

- IEC 60068-2-1: dry cold at $-40^{\circ} \mathrm{C}$

■ IEC 60068-2-2: dry heat at $+85^{\circ} \mathrm{C}$

- IEC 60068-2-30: damp heat (temperature $+55^{\circ} \mathrm{C}$, relative humidity 95%)

■ IEC 60068-2-52 level 2: salt mist.
Masterpact devices can operate in the industrial environments defined by standard IEC 60947 (pollution degree up to 4).
It is nonetheless advised to check that the devices are installed in suitably cooled switchboards without excessive dust.

Vibrations

Masterpact devices have successfully passed testing in compliance with IEC 60068-2-6 for the following vibration levels:
■ 2 to 13.2 Hz : amplitude $\pm 1 \mathrm{~mm}$
■ 13.2 to 100 Hz : constant acceleration 0.7 g .
Vibration testing to these levels is required by merchant marine inspection organisations (Veritas, Lloyd's, etc).

Some applications have vibration profiles outside of this standard and require special attention during application design, installation, and use. Excessive vibration may cause unexpected tripping, damage to connections or to other mechanical parts. Please refer to the Masterpact maintenance guide (causes of accelerated ageing / operating conditions / vibrations) for additional information.
Examples of applications with high vibration profiles could include:
■ wind turbines
■ power frequency converters that are installed in the same switchboard or close
proximity to the Masterpact circuit breaker
■ emergency generators

- high vibration marine applications such as thrusters, anchor positioning systems, etc.

Altitude

At altitudes higher than 2000 metres, the modifications in the ambient air (electrical resistance, cooling capacity) lower the following characteristics as follows:

Altitude (m)	2000	3000	4000	5000
Impulse withstand voltage Uimp (kV)	12	11	10	8
Rated insulation voltage (Ui)	1000	900	780	700
Maximum rated operationnal	NT, NW except H10	690	690	630
voltage $50 / 60 \mathrm{~Hz} \mathrm{Ue} \mathrm{(V)}$	NW H10	1000	890	795
Rated current $40^{\circ} \mathrm{C}$	$1 \times \ln$	$0.99 \times \ln$	$0.96 \times \ln$	700

Note: intermediate values may be obtained by interpolation.

Electromagnetic disturbances

Masterpact devices are protected against:
■ overvoltages caused by devices that generate electromagnetic disturbances

- overvoltages caused by atmospheric disturbances or by a distribution-system outage (e.g. failure of a lighting system)
- devices emitting radio waves (radios, walkie-talkies, radar, etc.)
- electrostatic discharges produced by users.

Masterpact devices have successfully passed the electromagnetic-compatibility tests (EMC) defined by the following international standards:

- IEC 60947-2, appendix F

■ IEC 60947-2, appendix B (trip units with earth-leakage function).
The above tests guarantee that:
■ no nuisance tripping occurs

- tripping times are respected.

Possible positions

Power supply

Masterpact devices can be supplied either from the top or from the bottom without reduction in performance, in order to facilitate connection when installed in a switchboard.

Mounting the circuit breaker

It is important to distribute the weight of the device uniformily over a rigid mounting surface such as rails or a base plate.
This mounting plane should be perfectly flat (tolerance on support flatness: 2 mm). This eliminates any risk of deformation which could interfere with correct operation of the circuit breaker.
Masterpact devices can also be mounted on a vertical plane using the special brackets.

Mounting on rails.

Mounting with vertical brackets.

Partitions

Sufficient openings must be provided in partitions to ensure good air circulation around the circuit breaker; Any partition between upstream and downstream connections of the device must be made of nonmagnetic material.
For high currents, of 2500 A and upwards, the metal supports or barriers in the immediate vicinity of a conductor must be made of non-magnetic material \mathbf{A}. Metal barriers through which a conductor passes must not form a magnetic loop.

Interphase barrier

If the insulation distance between phases is not sufficient ($\leqslant 14 \mathrm{~mm}$), it is advised to install phase barriers (taking into account the safety clearances). Mandatory for a Masterpact NT > 500 V .

Door interlock VPEC

Mounted on the right or left-hand side of the chassis, this device inhibits opening of the cubicle door when the circuit breaker is in "connected" or "test" position. It the breaker is put in the "connected" position with the door open, the door may be closed without having to disconnect the circuit breaker.

Dimensions (mm)

Type	$\mathbf{(1)}$	(2)
NT08-16 (3P)	135	168
NT08-16 (4P)	205	168
NW08-40 (3P)	215	215
NW08-40 (4P)	330	215
NW40b-63 (3P)	660	215
NW40b-63 (4P)	775	215

NT06-16.

NT08-63.

Breaker in "connected" or "test" position
Door cannot be opened

Breaker in "disconnected" position

Door can be opened

NT06-16.

NW08-40.

NW40b-63.

Dimensions (mm)

Type	(1)	(2)
NT	5	23
NW08-40	87	103
NW40b-63	37	53

Cable-type door interlock IPA

This option prevents door opening when the circuit breaker is closed and prevents circuit breaker closing when the door is open.
For this, a special plate associated with a lock and a cable is mounted on the right side of the circuit breaker. With this interlock installed, the source changeover function cannot be implemented.

Cables connections

If cables are used for the power connections, make sure that they do not apply excessive mechanical forces to the circuit breaker terminals.
For this, make the connections as follows:

- extend the circuit breaker terminals using short bars designed and installed according to the recommendations for bar-type power connections: \square for a single cable, use solution B opposite
\square for multiple cables, use solution C opposite
- in all cases, follow the general rules for connections to busbars:
\square position the cable lugs before inserting the bolts
\square the cables should firmly secured to the framework \mathbf{E}.

Busbars connections

The busbars should be suitably adjusted to ensure that the connection points are positioned on the terminals before the bolts are inserted B.
The connections are held by the support which is solidly fixed to the framework of the switchboard, such that the circuit breaker terminals do not have to support its weight C (this support should be placed close to the terminals).

Electrodynamic stresses

The first busbar support or spacer shall be situated within a maximum distance from the connection point of the breaker (see table below). This distance must be respected so that the connection can withstand the electrodynamic stresses between phases in the event of a short circuit.
Maximum distance A between busbar to circuit breaker connection and the first busbar support or spacer with respect to the value of the prospective short-circuit current.

Isc (kA)	30	50	65	80	100	150
Distance $\mathrm{A}(\mathrm{mm})$	350	300	250	150	150	150

1 Terminal screw factory-tightened to 16 Nm (NW), 13 Nm (NT).
2 Breaker terminal.
3 Busbar.
4 Bolt.
5 Washer.
6 Nut.

Clamping

Correct clamping of busbars depends amongst other things, on the tightening torques used for the nuts and bolts. Over-tightening may have the same consequences as under-tightening.
For connecting busbars (Cu ETP-NFA51-100) to the circuit breaker, the tightening torques to be used are shown in the table below.
These values are for use with copper busbars and steel nuts and bolts, class 8.8. The same torques can be used with AGS-T52 quality aluminium bars (French standard NFA 02-104 or American National Standard H-35-1),

Examples

Busbar drilling

Examples

Isolation distance

Dimensions (mm)	
Ui	X min
600 V	8 mm
1000 V	14 mm

Busbar bending

When bending busbars maintain the radius indicated below (a smaller radius would cause cracks).

Dimensions (mm)

e	Radius of curvature \mathbf{r} Min	Recommended
5	5	7.5
10	15	18 to 20

Installation
recommendations

Vertical rear connection

Front connection

Top connection

Bottom connection

Masterpact NW08 to NW63

Vertical rear connection NW08 to NW32, NW40b to NW50

Front connection NW08 to NW32

Top connection

Bottom connection

Installation

recommendations

Busbar sizing

Basis of tables:

- maximum permissible busbars temperature: $100^{\circ} \mathrm{C}$

■ Ti: temperature around the circuit breaker and its
connection
\square busbar material is unpainted copper.

Front or rear horizontal connection

Masterpact	Maximum service current	$\mathrm{Ti}: 40^{\circ} \mathrm{C}$ No. of 5 mm thick bars	No. of 10 mm thick bars	$\mathrm{Ti}: 50^{\circ} \mathrm{C}$ No. of 5 mm thick bars	No. of 10 mm thick bars	$\mathrm{Ti}: 60^{\circ} \mathrm{C}$ No. of 5 mm thick bars	No. of 10 mm thick bars
NT06	400	$2 \mathrm{~b} .30 \times 5$	$1 \mathrm{~b} .30 \times 10$	$2 \mathrm{~b} .30 \times 5$	$1 \mathrm{~b} .30 \times 10$	$2 \mathrm{~b} .30 \times 5$	$1 \mathrm{~b} .30 \times 10$
NT06	630	$2 \mathrm{~b} .40 \times 5$	1 b. 40×10	$2 \mathrm{~b} .40 \times 5$	1 b. 40×10	$2 \mathrm{~b} .40 \times 5$	$1 \mathrm{~b} .40 \times 10$
NT08 or NW08	800	$2 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .50 \times 10$	$2 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .50 \times 10$	$2 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .63 \times 10$
NT10 or NW10	1000	$3 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .63 \times 10$	$3 \mathrm{~b} .50 \times 5$	$2 \mathrm{~b} .50 \times 10$	$3 \mathrm{~b} .63 \times 5$	$2 \mathrm{~b} .50 \times 10$
NT12 or NW12	1250	$3 \mathrm{~b} .50 \times 5$	$2 \mathrm{~b} .40 \times 10$	$3 \mathrm{~b} .50 \times 5$	$2 \mathrm{~b} .50 \times 10$	$3 \mathrm{~b} .63 \times 5$	$2 \mathrm{~b} .50 \times 10$
		$2 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .40 \times 10$	$2 \mathrm{~b} .80 \times 5$			
NT16 or NW16	1400	$3 \mathrm{~b} .63 \times 5$	$2 \mathrm{~b} .40 \times 10$	$3 \mathrm{~b} .63 \times 5$	$2 \mathrm{~b} .50 \times 10$	$3 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .63 \times 10$
NT16 or NW16	1600	$3 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .63 \times 10$	$3 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .63 \times 10$	$3 \mathrm{~b} .80 \times 5$	$3 \mathrm{~b} .50 \times 10$
NW20	1800	$3 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .63 \times 10$	$3 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .63 \times 10$	$3 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .80 \times 10$
NW20	2000	$3 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .80 \times 10$	$3 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .80 \times 10$	$3 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .63 \times 10$
NW25	2200	4b. 100×5	$2 \mathrm{~b} .80 \times 10$	4b. 100×5	$2 \mathrm{~b} .80 \times 10$	4b. 100×5	$2 \mathrm{~b} .100 \times 10$
NW25	2500	$4 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .100 \times 10$	4b. 100×5	$2 \mathrm{~b} .100 \times 10$	$4 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .80 \times 10$
NW32	2800	4b. 100×5	$3 \mathrm{~b} .80 \times 10$	4b. 100×5	$3 \mathrm{~b} .80 \times 10$	$5 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .100 \times 10$
NW32	3000	$5 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .80 \times 10$	$6 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .100 \times 10$	$8 \mathrm{~b} .100 \times 5$	$4 \mathrm{~b} .80 \times 10$
NW32	3200	$6 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .100 \times 10$	$8 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .100 \times 10$		$4 \mathrm{~b} .100 \times 10$
NW40	3800		$4 \mathrm{~b} .100 \times 10$		$5 \mathrm{~b} .100 \times 10$		$5 \mathrm{~b} .100 \times 10$
NW40	4000		$5 \mathrm{~b} .100 \times 10$		$5 \mathrm{~b} .100 \times 10$		$6 \mathrm{~b} .100 \times 10$
NW50	4500		$6 \mathrm{~b} .100 \times 10$		$6 \mathrm{~b} .100 \times 10$		$7 \mathrm{~b} .100 \times 10$
NW50	5000		$7 \mathrm{~b} .100 \times 10$		$7 \mathrm{~b} .100 \times 10$		

With Masterpact NT, it is recommanded to use 50 mm wideness bars (see "Recommended busbars drilling").

Example

Conditions:

- drawout version
- horizontal busbars
- Ti: $50^{\circ} \mathrm{C}$

■ service current: 1800 A .

Solution:

For $\mathrm{Ti}=50^{\circ} \mathrm{C}$, use an NW20 which can be connected with three $80 \times 5 \mathrm{~mm}$ bars or two $63 \times 10 \mathrm{~mm}$ bars.

Basis of tables:

■ maximum permissible busbars temperature: $100^{\circ} \mathrm{C}$
■ Ti: temperature around the circuit breaker and its
connection
■ busbar material is unpainted copper.

Rear vertical connection

Masterpact	Maximum service current	Ti : $40^{\circ} \mathrm{C}$ No. of 5 mm thick bars	No. of 10 mm thick bars	$\mathrm{Ti}: 50^{\circ} \mathrm{C}$ No. of 5 mm thick bars	No. of 10 mm thick bars	$\mathrm{Ti}: 60^{\circ} \mathrm{C}$ No. of 5 mm thick bars	No. of 10 mm thick bars
NT06	400	$2 \mathrm{~b} .30 \times 5$	$1 \mathrm{~b} .30 \times 10$	$2 \mathrm{~b} .30 \times 5$	$1 \mathrm{~b} .30 \times 10$	$2 \mathrm{~b} .30 \times 5$	$1 \mathrm{~b} .30 \times 10$
NT06	630	$2 \mathrm{~b} .40 \times 5$	$1 \mathrm{~b} .40 \times 10$	$2 \mathrm{~b} .40 \times 5$	$1 \mathrm{~b} .40 \times 10$	$2 \mathrm{~b} .40 \times 5$	$1 \mathrm{~b} .40 \times 10$
NT08 or NW08	800	$2 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .50 \times 10$	$2 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .50 \times 10$	$2 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .50 \times 10$
NT10 or NW10	1000	$2 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .50 \times 10$	$2 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .50 \times 10$	$2 \mathrm{~b} .63 \times 5$	$1 \mathrm{~b} .63 \times 10$
NT12 or NW12	1250	$2 \mathrm{~b} .63 \times 5$	$1 \mathrm{~b} .63 \times 10$	$3 \mathrm{~b} .50 \times 5$	$2 \mathrm{~b} .40 \times 10$	$3 \mathrm{~b} .50 \times 5$	$2 \mathrm{~b} .40 \times 10$
NT16 or NW16	1400	$2 \mathrm{~b} .80 \times 5$	$1 \mathrm{~b} .80 \times 10$	$2 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .50 \times 10$	$3 \mathrm{~b} .63 \times 5$	$2 \mathrm{~b} .50 \times 10$
NT16 or NW16	1600	$3 \mathrm{~b} .63 \times 5$	$2 \mathrm{~b} .50 \times 10$	$3 \mathrm{~b} .63 \times 5$	$2 \mathrm{~b} .50 \times 10$	$3 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .63 \times 10$
NW20	1800	$2 \mathrm{~b} .100 \times 5$	$1 \mathrm{~b} .80 \times 10$	$2 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .50 \times 10$	$3 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .63 \times 10$
NW20	2000	3b. 100×5	$2 \mathrm{~b} .63 \times 10$	$3 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .63 \times 10$	3b. 100×5	$2 \mathrm{~b} .80 \times 10$
NW25	2200	3b. 100×5	$2 \mathrm{~b} .63 \times 10$	$3 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .63 \times 10$	$3 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .80 \times 10$
NW25	2500	4b. 100×5	$2 \mathrm{~b} .80 \times 10$	4b. 100×5	$2 \mathrm{~b} .80 \times 10$	4b. 100×5	3 b. 80×10
NW32	2800	4b. 100×5	$2 \mathrm{~b} .100 \times 10$	4b. 100×5	$2 \mathrm{~b} .100 \times 10$	4b. 100×5	$3 \mathrm{~b} .80 \times 10$
NW32	3000	5b. 100×5	$3 \mathrm{~b} .80 \times 10$	$6 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .100 \times 10$	$5 \mathrm{~b} .100 \times 5$	$4 \mathrm{~b} .80 \times 10$
NW32	3200	$6 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .100 \times 10$	$6 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .100 \times 10$		$4 \mathrm{~b} .100 \times 10$
NW40	3800		$4 \mathrm{~b} .100 \times 10$		$4 \mathrm{~b} .100 \times 10$		$4 \mathrm{~b} .100 \times 10$
NW40	4000		$4 \mathrm{~b} .100 \times 10$		$4 \mathrm{~b} .100 \times 10$		$4 \mathrm{~b} .100 \times 10$
NW50	4500		$5 \mathrm{~b} .100 \times 10$		$5 \mathrm{~b} .100 \times 10$		$6 \mathrm{~b} .100 \times 10$
NW50	5000		$5 \mathrm{~b} .100 \times 10$		$6 \mathrm{~b} .100 \times 10$		$7 \mathrm{~b} .100 \times 10$
NW63	5700		$7 \mathrm{~b} .100 \times 10$		$7 \mathrm{~b} .100 \times 10$		$8 \mathrm{~b} .100 \times 10$
NW63	6300		$8 \mathrm{~b} .100 \times 10$		$8 \mathrm{~b} .100 \times 10$		

Example

Conditions:

- drawout version
- vertical connections
- Ti: $40^{\circ} \mathrm{C}$

■ service current: 1100 A .

Solution :

For $\mathrm{Ti}=40^{\circ} \mathrm{C}$ use an NT12 or NW12 which can be connected with two $63 \times 5 \mathrm{~mm}$ bars or with one $63 \times 10 \mathrm{~mm}$ bar.

Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test.

Installation
recommendations

Temperature derating Power dissipation and input / output resistance

Temperature derating

The table below indicates the maximum current rating, for each connection type, as a function of Ti around the circuit breaker and the busbars.
Circuit breakers with mixed connections have the same derating as horizontally connected breakers.
For Ti greater than $60^{\circ} \mathrm{C}$, consult us.
Ti: temperature around the circuit breaker and its connection.

Version	Drawout													
Connection	Front or rear horizontal							Rear vertical						
Temp. Ti	40	45	50	55	60	65	70	40	45	50	55	60	65	70
NT06 H1/H2/L1	630							630						
NT08 H1/H2/L1	800							800						
NT10 H1/H2/L1	1000							1000						
NT12 H1/H2	1250					1200	1140	1250						
NT16 H1/H2	1600	1560	1520	1480	1440	1400	1360	1600			1560	1520	1480	1440
NW08 N/H/L	800							800						
NW10 N/H/L	1000							1000						
NW12 N/H/L	1250							1250						
NW16 N/H/L	1600						1520	1600						
NW20 H1/H2/H3	2000				1900	1830	1750	2000						
NW20 L1	2000					1950	1900	2000						
NW25 H1/H2/H3	2500					2450	2370	2500						
NW32 H1/H2/H3	3200		3100	3030	2950	2880	2800	3200						3100
NW40 H1/H2/H3	4000	3900	3800	3700	3600	3500	3400	4000			3900	3800	3700	3600
NW40b H1/H2	4000							4000						
NW50 H1/H2	5000							5000						
NW63 H1/H2	-	-	-	-	-			6300				6200	6000	5800

Version	Fixed													
Connection	Front or rear horizontal							Rear vertical						
Temp. Ti	40	45	50	55	60	65	70	40	45	50	55	60	65	70
NT06 H1/H2/L1	630							630						
NT08 H1/H2/L1	800							800						
NT10 H1/H2/L1	1000							1000						
NT12 H1/H2	1250							1250						
NT16 H1/H2	1600				1560	1520	1480	1600						1560
NW08 N/H/L	800							800						
NW10 N/H/L	1000							1000						
NW12 N/H/L	1250							1250						
NW16 N/H/L	1600							1600						
NW20 H1/H2/H3	2000				1920	1850	1770	2000						
NW20 L1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
NW25 H1/H2/H3	2500							2500						
NW32 H1/H2/H3	3200				3140	3050	2960	3200						
NW40 H1/H2/H3	4000			3900	3800	3700	3600	4000					3900	3800
NW40b H1/H2	4000							4000						
NW50 H1/H2	5000							5000						
NW63 H1/H2	-	-	-	-	-	-	-	6300						6200

Power dissipation

Total power dissipation is the value measured at In , $50 / 60 \mathrm{~Hz}$, for a 3 pole or 4 pole breaker, warm steady state temperature as per IEC 60947.

Version	Drawout	Fixed
	Power dissipation (Watts)	Power dissipation (Watts)
NT06 H1/H2/L1	$55 / 115(\mathrm{H} 1 / \mathrm{L} 1)$	$30 / 45$
NT08 H1/H2/L1	$90 / 140(\mathrm{H} 1 / \mathrm{L} 1)$	$50 / 80$
NT10 H1/H2/L1	$150 / 230(\mathrm{H} 1 / \mathrm{L} 1)$	$80 / 110$
NT12 H1/H2	250	130
NT16 H1/H2	460	220
NW08 N1	137	62
NW08 H/L	100	42
NW10 N1	220	100
NW10 H/L	150	70
NW12 N1	330	150
NW12 H/L	230	100
NW16 N1	480	220
NW16 H/L	390	170
NW20 H/L	470	250
NW25 H1/H2/H3	600	260
NW32 H1/H2/H3	670	420
NW40 H1/H2/H3	900	650
NW40b H1/H2	550	390
NW50 H1/H2	950	660
NW63 H1/H2	1200	1050

Derating in switchboards

Factors affecting switchboard design

The temperature around the circuit breaker and its connections:
This is used to define the type of circuit breaker to be used and its connection arrangement.
Vents at the top and bottom of the cubicles:
Vents considerably reduce the temperature inside the switchboard, but must be designed so as to respect the degree of protection provided by the enclosure. For weatherproof heavy-duty cubicles, a forced ventilation system may be required.
The heat dissipated by the devices installed in the switchboard:
This is the heat dissipated by the circuit breakers under normal conditions (service current).

The size of the enclosure:

This determines the volume for cooling calculations.
Switchboard installation mode:
Free-standing, against a wall, etc.

Horizontal partitions:

Partitions can obstruct air circulation within the enclosure.

Basis of tables

- switchboard dimensions

■ number of circuit breakers installed

- type of breaker connections
- drawout versions

■ ambient temperature outside of the switchboard: T_{a} (IEC 60439-1).

Masterpact NT06-16 H1/H2/L1 (switchboard $2000 \times 400 \times 400$) - area of outlet vents: $150 \mathrm{~cm}^{2}$

Busbar dimensions (mm)	$2 b .40 \times 5$	$2 b .50 \times 5$	$3 b .63 \times 5$	$3 b .63 \times 5$

(1) Area of outlet vents: $150 \mathrm{~cm}^{2}$.
(2) Area of inlet vents: $150 \mathrm{~cm}^{2}$

Non ventilated switchboard (\rightarrow IP54)			4										
			3	630	630	800	800	1000/960	1000/1000	1250	1250	1330	1400
	-	$\mathrm{T}_{\mathrm{a}}=35^{\circ} \mathrm{C}$	2										
	-		1										
	$\xrightarrow{\square}$		4										
	- - $^{-1}$		3	630	630	800	800	1000/910	1000/980	1220	1250	1260	1330
	- ${ }^{2000}$	$\mathrm{T}_{\mathrm{a}}=45^{\circ} \mathrm{C}$	2										
	-		1										
	-		4										
			3	630	630	800	800	1000/860	1000/930	1150	1230	1200	1260
	4	$\mathrm{T}_{\mathrm{a}}=55^{\circ} \mathrm{C}$	2										
	${ }^{400} \times^{400}$		1										

[^7]Masterpact NT06-08 H1/H2/L1 (switchboard $2300 \times 1100 \times 500$) - area of outlet vents: $300 \mathrm{~cm}^{2}$

Type
Switchboard composition

Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test.
The values indicated for the cross-sectional area of the vents should be considered as general indications only given that the thermal performance of a switchboard with natural ventilation depends on many parameters, e.g. shape, porosity and location of vents and air flow within the switchboard.

Masterpact NT10-16 H1/H2/L1 (switchboard $2300 \times 1100 \times 500$) - area of outlet vents: $300 \mathrm{~cm}^{2}$

(1) Area of outlet vents: $300 \mathrm{~cm}^{2}$.
(2) Area of inlet vents: $300 \mathrm{~cm}^{2}$.

Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test.
The values indicated for the cross-sectional area of the vents should be considered as general indications only given that the thermal performance of a switchboard with natural ventilation depends on many parameters, e.g. shape, porosity and location of vents and air flow within the switchboard.

Masterpact NW08-10 N/H/L (switchboard $2300 \times 800 \times 900$) - area of outlet vents: $350 \mathrm{~cm}^{2}$

(1) Area of outlet vents: $350 \mathrm{~cm}^{2}$.
(2) Area of inlet vents: $350 \mathrm{~cm}^{2}$

Non ventilated switchboard$(\rightarrow \text { IP54 }$	4					800				
	3				800	800				1000
$\mathrm{T}_{\mathrm{a}}=35^{\circ} \mathrm{C}$	2			800	800	800	1000			1000
$\xrightarrow{+}$	1	800	800	800	800	800	1000	1000	1000	1000
	4					800				
	3				800	800				1000
$2300 \quad \mathrm{~T}_{\mathrm{a}}=$	2			800	800	800			1000	1000
-	1	800	800	800	800	800	1000	1000	1000	1000
+	4					800				
-1 $T=55^{\circ} \mathrm{C}$	3				800	800				1000
	2			800	800	800			1000	1000
$900 \longrightarrow$	1	800	800	800	800	800	1000	1000	1000	1000

Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test.
The values indicated for the cross-sectional area of the vents should be considered as general indications only given that the thermal performance of a switchboard with natural ventilation depends on many parameters, e.g. shape, porosity and location of vents and air flow within the switchboard.

Masterpact NW12-16 N/H/L (switchboard $2300 \times 800 \times 900$) - area of outlet vents: $350 \mathrm{~cm}^{2}$

(1) Area of outlet vents: $350 \mathrm{~cm}^{2}$.
(2) Area of inlet vents: $350 \mathrm{~cm}^{2}$.

Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test.
The values indicated for the cross-sectional area of the vents should be considered as general indications only given that the thermal performance of a switchboard with natural ventilation depends on many parameters, e.g. shape, porosity and location of vents and air flow within the switchboard.

Masterpact NW20-40 N/H/L (switchboard $2300 \times 800 \times 900$) - area of outlet vents: $350 \mathrm{~cm}^{2}$

(1) Area of outlet vents: $350 \mathrm{~cm}^{2}$.
(2) Area of inlet vents: $350 \mathrm{~cm}^{2}$.
(2) Area of inlet vents: $350 \mathrm{~cm}^{2}$

Masterpact NW40b-63 H1/H2 (switchboard $2300 \times 1400 \times 1500$) - area of outlet vents: $500 \mathrm{~cm}^{2}$

(1) Area of outlet vents: $500 \mathrm{~cm}^{2}$.
(2) Area of inlet vents: $500 \mathrm{~cm}^{2}$.

Non ventilated switchboard$(\rightarrow \text { IP54 })$	4					
		3				
	$\mathrm{T}_{\mathrm{a}}=35^{\circ} \mathrm{C}$	$\underline{24000 \quad 4000}$		4350	4650	5290
		4				
		3				
	$\mathrm{T}_{\mathrm{a}}=45^{\circ} \mathrm{C}$	24000	4000	4100	4400	5040
		1				
		4				
		3				
	$\mathrm{T}_{\mathrm{a}}=55^{\circ} \mathrm{C}$	23840	3840	3850	4150	4730
		1				

Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test.
The values indicated for the cross-sectional area of the vents should be considered as general indications only given that the thermal performance of a switchboard with natural ventilation depends on many parameters, e.g. shape, porosity and location of vents and air flow within the switchboard.

Installation

recommendations

Substitution kit

Fixed / drawout devices 800 to 3200 A

It is possible to replace a Masterpact (M08 to M32) with a new Masterpact (NW08 to NW32) with the same power rating.
Substitution is possible for the following types of circuit breakers:
■ N1, H1, H2 for both fixed and drawout versions

- L1 for drawout versions up to 2000 A.

: Masterpact NW
: Masterpact M

Fixing points are identical for Masterpact (M08 to M32) and Masterpact (NW08 to NW32), except for the four-pole chassis.

Door cut-out

■ Without an escutcheon, the cut-out is identical ($270 \times 325 \mathrm{~mm}$).

- With the former escutcheon, the cut-out is identical ($270 \times 325 \mathrm{~mm}$).

■ With the new escutcheon, the cut-out is different.

Fixed version

Drawout version

Power connection

Select a set of retrofit connectors to replace the standard connectors and avoid any modifications to the busbars (see the retrofit section in "orders and quotations").

[^8]References X and Y represent the symmetry planes for three-pole devices.

Control wiring

Wiring of voltage releases

During pick-up, the power consumed is approximately 150 to 200 VA. For low control voltages ($12,24,48 \mathrm{~V}$), maximum cable lengths are imposed by the voltage and the cross-sectional area of cables.
Recommended maximum cable lengths (meter).

		12 V		24 V		48 V	
		2.5 mm ${ }^{2}$	1.5 mm ${ }^{2}$	2.5 mm ${ }^{2}$	1.5 mm ${ }^{2}$	2.5 mm ${ }^{2}$	1.5 mm ${ }^{2}$
MN	U source 100 \%	-	-	58	35	280	165
	U source 85 \%	-	-	16	10	75	45
MX-XF	U source 100 \%	21	12	115	70	550	330
	U source 85 \%	10	6	75	44	350	210

Note: the indicated length is that of each of the two wires.

24 V DC power-supply module

External 24 V DC power-supply module for Micrologic (F1-, F2+)
\square It is recommended to use the AD power supply due to its low stray primary-
secondary capacitance. Good operation of the Micrologic Trip Unit in noisy environment is not guaranteed with other power supplies.

- The dedicated AD power supplies shall be used only for the Micrologic trip units. If the COM option is used, a second dedicated power supply shall be used.
- M2C and M6C modules can be supplied by Micrologic external AD power supply.
- The consumption of a Micrologic Trip Unit is approximately 100 mA .
- The consumption of M2C and M6C modules is approximately 100 mA .

■ A number of 5 devices (Micrologic control units with M2C or M6C) can be
connected to the same AD power supply. Add other AD power supply for more than 5 devices.

- For Micrologics control units alone, a number of 10 devices can be connected to
the same AD power supply. Add other AD power supply for more than 10 Micrologics.
■ If the installation is shared between several panels, one AD power supply shall be added for each panel.
- AD power supply dedicated to Micrologics trip units shall not be connected to earth. (F1-, F2+).
External 24 V DC power supply for Communication bus
- A dedicated 24 V DC power supply shall be used for the communication devices.

■ Do not connect the positive terminal (E1) to earth.

- The negative terminal (E2) can be connected to earth.
- A number of communication modules (BCM, IFE, IFM, I/O, FDM...) can be connected to the same 24 V DC power supply. Refer bellow the devices consumption table to avoid exceeding the maximum current delivered by the 24 V DC power supply.
ULP module consumption
The table below lists the ULP module consumption.

Module	Typical Consumption $\left(\mathbf{2 4 ~ \mathrm { VCC } \text { at } \mathbf { ~ 2 ~ } ^ { \circ } \mathrm { C } / 6 8 { } ^ { \circ } \mathrm { F })}\right.$ 40 mA	Maximum Consumption $\left(19.2 \mathrm{~V} \mathrm{DC}\right.$ at $\left.60^{\circ} \mathrm{C} / 140^{\circ} \mathrm{F}\right)$
BCM ULP for Masterpact and Compact NS	30 mA	55 mA
Micrologic 5 or 6 trip unit for Compact NSX circuit breakers	9 mA	15 mA
BSCM for Compact NSX circuit breakers	15 mA	19 mA
2-wire RS 485 isolated repeater	21 mA	30 mA
FDM121 display for LV circuit breaker		
IFM Modbus-SL interface for LV circuit breaker	21 mA	30 mA
IFE Ethernet interface for LV circuit breaker	120 mA	3 A (with gateway)
I/O input/output interface module for LV circuit breaker	165 mA	420 mA
Maintenance module	0 mA (the maintenance module has its own power supply)	0 mA (the maintenance module has its own power supply)

Installation recommendation

■ The 24 V DC wires (output of the 24 V DC power supply) shall be twist together.
■ The 24 V DC wires (output of the 24 V DC power supply) must cross all power cables perpendicularly.
■ The technical characteristics of the external 24 V DC power-supply module for
Micrologic control units are indicated on page A-28.
Note: wiring of ZSI: it is recommended to use twisted shielded cable. The shield must be connected to earth at both ends.

Masterpact M Retrofitting: electrical diagrams

Correspondences between Masterpact NW and Masterpact M terminal blocks.

Presentation 2
Functions and characteristics A-1
Installation recommendations $B-1$
NT06 to NT16 circuit breakers
Fixed 3/4-poles device C-2
Drawout 3/4-poles device C-6
NW08 to NW32 circuit breakers
Fixed 3/4-poles device C-10
Drawout 3/4-poles device C-12
NW40 circuit breakers
Fixed 3/4-poles device C-14
Drawout 3/4-poles device C-16
NW40b to NW63 circuit breakers
Fixed 3/4-poles device C-18
Drawout 3/4-poles device C-20
NT/NW accessories C-22
NT/NW external modules C-24
FDM121 switchboard display C-29
FDM128 switchboard display C-30
Electrical diagrams D-1
Additional characteristicsE-1
Catalogue numbers and order form F-1

Dimensions and connections

NT06 to NT16 circuit breakers
Fixed 3/4-poles device

Dimensions

Bottom mounting (on base plate or rails)
Rear mounting detail (on upright or backplate)

Safety clearances

Door cutout
Rear panel cutout

For voltages < 690 V

	Parts Insulated	Metal	Energised
A	0	0	100
B	0	0	60

(1) Without escutcheon.

[^9]Tightening torque: $\mathbf{5 0} \mathbf{N m}$ with contact washer.

Dimensions and connections

NT06 to NT16 circuit breakers
Fixed 3/4-poles device

Detail

Spreader detail
Middle left or middle right Middle spreader for 3P. Left or right spreader for 4P. Left or right spreader for 3P. spreader for 4P.

View A detail.

Front connection via vertical connection adapters fitted with cable-lug adapters

Detail

View A detail.

Dimensions and connections

NT06 to NT16 circuit breakers
Drawout 3/4-poles device

Dimensions

(*) Disconnected position.
Bottom mounting (on base plate or rails)
Rear mounting detail (on upright or backplate)

For voltages $\leqslant 690 \mathrm{~V}$

	Parts Insulated	Metal	Energised
A	0	0	30
B	10	10	60
\mathbf{C}	0	0	30

Front connection

Detail

Dimensions and connections

NT06 to NT16 circuit breakers
Drawout 3/4-poles device

Connections

Front connection with spreaders

Spreader detail
Middle left or middle right spreader for 4P.

View A detail.

Dimensions and connections

NW08 to NW32 circuit breakers
Fixed 3/4-poles device

Dimensions

Mounting on base plate or rails
Mounting detail

Safety clearances

Door cutout

	Insulated parts	Metal parts	Energised parts
A	0	0	100
\mathbf{B}	0	0	60

(1) Without escutcheon.
(2) With escutcheon
(2) With escutcheon.

Note: X and Y are the symmetry planes for a 3-pole device.
$A\left({ }^{*}\right)$ An overhead clearance of 50 mm is required to remove the arc chutes. An overhead clearance of 20 mm is required to remove the terminal block.

Dimensions and connections

NW08 to NW32 circuit breakers
Drawout 3/4-poles device

(*) Disconnected position.

Safety clearances

Door cutout

	Insulated parts	Metal parts	Energised parts
A	0	0	0
\mathbf{B}	0	0	60

(1) Without escutcheon.
(2) With escutcheon.

The safety clearances take into account the space required to remove the arc chutes. Note: X and Y are the symmetry planes for a 3-pole device.

Vertical rear connection

Front connection

Detail

View A detail.
Detail

Top connection
Bottom connection

View A detail.

Dimensions and connections

NW40 circuit breakers
Fixed 3/4-poles device

Mounting on base plate or rails

Mounting detail

Safety clearances

Door cutout

	Insulated parts	Metal parts	Energised parts
A	0	0	100
\mathbf{B}	0	0	60

[^10](1) Without escutcheon.
(2) With escutcheon.

Note: X and Y are the symmetry planes for a 3-pole device.
$A\left({ }^{*}\right)$ An overhead clearance of 110 mm is required to remove the arc chutes.
An overhead clearance of 20 mm is required to remove the terminal block.

Connections

Horizontal rear connection

Detail

Vertical rear connection

Detail

View A detail

Dimensions and connections

NW40 circuit breakers
Drawout 3/4-poles device

Dimensions

(*) Disconnected position.

Safety clearances

Door cutout

	Insulated parts	Metal parts	Energised parts
A	0	0	0
B	0	0	60

Detail

Vertical rear connection

View A detail.

Tightening torque: $\mathbf{5 0} \mathbf{~ N m}$ with contact washer.

Dimensions
and connections

NW4Ob to NW63
circuit breakers
Fixed 3/4-poles device

Mounting on base plate or rails

Mounting detail

Safety clearances

Door cutout

	Insulated parts	Metal parts	Energised parts
A	0	0	100
B	0	0	60

Vertical rear connection

View A detail.
Front connection
Detail

Dimensions
and connections

NW4Ob to NW63 circuit breakers
Drawout 3/4-poles device

(*) Disconnected position.

Safety clearances

Door cutout

(1) Without escutcheon.
(2) With escutcheon.

The safety clearances take into account the space required to remove the arc chutes. Note: X and Y are the symmetry planes for a 3-pole device.
\boldsymbol{F} : datum.

Vertical rear connection (NW40b - NW50)
Detail

View A detail.

Vertical rear connection (NW63)

Detail

Dimensions and connections

Mounting on backplate with special brackets (Masterpact NW08 to 32 fixed)

Disconnectable front-connection adapter (Masterpact NW08 to 32 fixed)
Horizontal rear connection
Detail

View A detail.

Vertical rear connection

Detail

Note: recommended connection screws: M10 class 8.8 Tightening torque: $\mathbf{5 0} \mathbf{N m}$ with contact washer.

View A detail.

Rear panel cutout (drawout devices)

NW08 to NW40

Rear view

NW40b to NW63

Rear view

Masterpact NW

Fixed device

F: datum.

Drawout device

Dimensions and connections

Connection of auxilary wiring to terminal block

One conductor only per connection point.

External power supply module (AD)

Battery module (BAT)
Mounting

Delay unit for MN release

External sensor for source ground return (SGR) protection

Sensor

"MGDF summer" module

IFE - Ethernet interface

Dimensions
NT/NW external modules
and connections

I/O (Input/Output) application module

IFM - Modbus-SL interface

Com'X 200

Installation
400/1600 A (NT06 to NT16)

1000/4000 A (NW025 to NW40)

400/2000 A (NW08 to NW20)

4000/6300 A (NW40b to NW63)

Dimensions and connections

Rectangular sensor for earth leakage protection (Vigi)
$280 \times 115 \mathrm{~mm}$ window

Busbars path

$280 \times 115 \mathrm{~mm}$ window
Busbars spaced 70 mm centre-to-centre

2 bars 50×10.

2 bars 100×5.
$470 \times 160 \mathrm{~mm}$ window
Busbars spaced 115 mm centre-to-centre

4 bars 100×5.

4 bars 125×5.

Dimensions

Mounting
Through panel

On panel

Connector (optional).

Dimensions
and connections

Dimensions

Y

Mounting

On panel

Presentation 2
Functions and characteristics A-1
Installation recommendations $B-1$
Dimensions and connections C-1
Masterpact NT06 to NT16
Fixed and drawout devices D-2
Masterpact NW08 to NW63
Fixed and drawout devices D-4
Masterpact NT and NW
Earth-fault and earth-leakage protection Neutral protection
Zone selective interlocking D-6
Communication D-8
Fixed, electrically operated Masterpact NT and NW
Connection to the communication interface moduleD-9
Withdrawable Masterpact NT and NW
Connection to the I/O and communication interface module D-10
Masterpact NT and NW
24 V DC external power supply AD module D-11
Additional characteristics E-1
Catalogue numbers and order form F-1

Masterpact NT06 to NT16
 Fixed and drawout devices

The diagram is shown with circuits de-energised, all devices open, connected and charged and relays in
normal position.

A	E	P	H	Control unit
\square	\square	\square	-	Com : E1-E6 communication
\square	\square	\square	\square	UC1: Z1-Z5 zone selective interlocking Z1 = ZSI OUT SOURCE Z2 = ZSI OUT ; Z3 = ZSI IN SOURCE Z4 = ZSI IN ST (short time) Z5 = ZSI IN GF (earth fault)
\square		\square	■	M1 = Vigi module input (Micrologic 7)
\square	\square	\square		UC2 : T1, T2, T3, T4 = external neutral M2, M3 = Vigi module input (Micrologic 7)
-	\square	\square	\square	UC3: F2+, F1- external 24 V DC power supply VN external voltage connector (must be connected to the neutral with a 3P circuit breaker)
		\square	■	UC4 : External Voltage Connector (PTE option) or
	-	\square	\square	M2C : 2 programmable contacts (external relay) ext. 24 V DC power supply required. or
		\square	\square	M6C : 6 programmable contacts to be connected to the external module M6C) ext. 24 V DC power supply required.
A : digital ammeter. E : energy.				P:A + power meter + additional protection. H: P+harmonics.

Remote operation							
SDE2 / Res	SDE1	MN	/ MX2	MX1	XF	PF	MCH
$\text { ठ }_{184} \text {, } \delta_{K 2}^{\circ}$	${ }_{84}^{\circ}$	$\delta_{\mathrm{D} 2}^{\mathrm{O}}$	${ }_{\mathrm{C}}^{\mathrm{C} 12} \mathrm{O}$	$\overleftarrow{C}_{\mathrm{C} 2}^{\mathrm{O}}$	$\delta_{\mathrm{A} 2}^{\mathrm{O}}$	${ }_{254}^{\circ}$	$\delta_{\mathrm{B} 2}^{\mathrm{O}}$
δ_{182}	$\overleftarrow{82}^{\circ}$			$\overleftarrow{\mathrm{C}}^{\mathrm{O}} \mathrm{O}$	$\delta_{\mathrm{A} 3} \mathrm{O}$	${ }_{252}$	$\delta_{\mathrm{B} 3} \mathrm{O}^{\circ}$
$\mathrm{\delta}_{181} \mathrm{O}, \delta_{\mathrm{K} 1}^{0}$	${ }_{81}{ }^{\circ}$	$\delta_{\mathrm{D} 1}$	$\begin{aligned} & \mathrm{O}_{\mathrm{C} 11}{ }^{2} \\ & \hline \end{aligned}$	$\overleftarrow{C 1}_{\mathrm{C} 1}^{0}$	$\delta_{\mathrm{A} 1}^{\mathrm{O}}$	${ }_{251}^{\circ}$	$\zeta_{\mathrm{B} 1}{ }^{\circ}$

Remote operation

SDE2 : fault-trip indication contact
or
Res: remote reset
SDE1 : fault-trip indication contact (supplied as standard)
MN: undervoltage release
or
MX2 : shunt release
MX1 : shunt release (standard or communicating)
XF : closing release (standard or communicating)
PF : ready-to-close contact
MCH : electric motor

Note: when communicating MX or XF releases are used, the third wire $(C 3, A 3)$ must be connected even if the communication module is not installed.
Indication contacts Chassis contacts

Indication contacts			
OF4	OF3	OF2	OF1
σ_{44}	δ_{34}	δ_{24}	δ_{14}
σ_{42}	${ }_{32} \mathrm{O}$	${ }_{22}$	δ_{12}
σ_{41}	\bigcirc	\bigcirc	δ_{11}

Chassis contacts					
CD2	CD1	CE3	CE2	CE1	CT1
δ_{824}	$\overleftarrow{814}^{\circ}$	$\overleftarrow{334}^{\circ}$	$\overleftarrow{324}^{\circ}$	$\overleftarrow{314}^{\circ}$	$\overleftarrow{914}_{0}^{\circ}$
${ }_{822}$	δ_{812}	δ_{332}	δ_{322}	$\overleftarrow{312}^{\circ}$	δ_{912}°
$\begin{aligned} & \delta 8 \\ & 821 \\ & \hline \end{aligned}$	δ_{811}	${ }_{331}$	${ }_{321}$	$\overleftarrow{311}^{\circ}$	${ }_{911}{ }^{\circ}$

Indication contacts
OF4 / OF3 / OF2 / OF1 : ON/OFF indication contacts.
(*) Spring charging motor 440/480 V AC (380 V motor + additional resistor)

Chassis contacts
CD2: disconnected CD1

CE3: connecte CE2 position CE1 contact

CD1	position	CE2	position

Key:
\square drawout device only.

Masterpact NW08 to NW63
 Fixed and drawout devices

The diagram is shown with circuits de-energised, all devices open, connected and charged and relays in
normal position.

	Control unit										
Terminal block marking	Com		UC1		UC2		UC3	UC4	M2C	I	M6C
		- ${ }_{\text {E } 6}$		$\begin{gathered} \circ \\ \text { M1 } \end{gathered}$			$\underset{\mathrm{F} 2+}{\mathrm{O}}$	$\sigma_{V 3}$	0	1	©
		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	$\bigcirc \bigcirc$	$\bigcirc \bigcirc$	$\bigcirc \bigcirc$		\bigcirc
		E4		Z4		T4	VN	V2	474	1	Q2
	E1	-	O	O	-	-	$\stackrel{\circ}{\mathrm{O}} \mathrm{O}$	$\delta_{\mathrm{V} 1}$	$\begin{gathered} \circ \mathrm{O} \\ 471 \end{gathered}$	1	$\begin{gathered} \circ \\ \mathrm{Q} 1 \\ \hline \end{gathered}$

| A | Control unit |
| :--- | :--- | :--- | :--- | :--- | :--- |

(1) The PTE option with Micrologic E is not compatible with an external potential CT.

Schneider

Remote operation

SDE2 : fault-trip indication contact
or
Res: remote reset
SDE1 : fault-trip indication contact (supplied as standard)
MN: undervoltage release
or
MX2 : shunt release
MX1 : shunt release (standard or communicating)
XF : closing release (standard or communicating)
PF : ready-to-close contact
MCH : electric motor

Note: when communicating MX or XF releases are used, the third wire $(C 3, A 3)$ must be connected even if the communication module is not installed.

OF4	OF3	OF2	OF1
$\begin{gathered} 8 . \\ 44 \\ \hline \end{gathered}$	$\begin{array}{r} \circ \\ \\ \hline \end{array}$	${ }_{24}{ }^{\circ}$	50
${ }_{42}{ }^{\circ}$	$\begin{array}{r} \delta 1 \\ \hline \end{array}$	${ }_{22}$	$\mathrm{o}_{12} \mathrm{o}$
80	$\text { ס } 31$	$\begin{gathered} \circ \\ 21 \end{gathered}$	$\bigcirc 0$

OF24 OF23 OF22 OF21 OF14 OF13 OF12 OF11

 | 241 | 231 | 221 | 211 | 141 | 131 | 121 | 111 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| or |

EF24 EF23 EF22 EF21 EF14 EF13 EF12 EF11

245	235	225	215	145	135	125	115

Indication contacts

OF4:	ON/OFF indication contacts	OF24 or
OF3	EF24	Combined
OF2		"connected-deconnected"
OF1	OF23 or	indication contacts
	EF23	
	OF22 or	
	EF22	
	OF21 or	
	EF21	
	OF14 or	
	EF14	
	OF13 or	
	EF13	
	OF2 or	
	EF12	
		OF11 or
	EF11	

Earth-fault and earth-leakage protection
Neutral protection
Zone selective interlocking

External sensor (CT) for residual earth-fault protection

Connection of current-transformer secondary

circuit for external neutral

Masterpact equipped with a Micrologic 6 A/E/P/H:
\square shielded cable with 2 twisted pairs

- T1 twisted with T2
- maximum length 4 meters
- cable cross-sectional area 0.4 to $1.5 \mathrm{~mm}^{2}$
- recommended cable: Belden 9552 or equivalent. For proper wiring of neutral CT, refer to instruction Bulletin 48041-082-03 shipped with it.
Do not remove Micrologic factory-installed jumper between T1 and T2 unless neutral CT is connected. If supply is via the top, follow the shematics. If supply is via the bottom, control wiring is identical; for the power wiring, H 1 is connected to the source side, H 2 to the load side.
For four-pole versions, for residual earth-fault protection, the current transformer for the external neutral is not necessary.
Connection for signal VN is required only for power measurements ($3 \varnothing, 4$ wires, 4CTs).

External transformer for source ground return (SGR) earth-fault protection

Connection of the secondary circuit

Masterpact equipped with a Micrologic $6 \mathrm{~A} / \mathrm{E} / \mathrm{P} / \mathrm{H}$:

- unshielded cable with 1 twisted pair
- maximum length 150 meters
- cable cross-sectional area 0.4 to $1.5 \mathrm{~mm}^{2}$
- terminals 5 and 6 may not be used at the same time
- use terminal 5 for NW08 to 40
- use terminal 6 for NW40b to 63
- recommended cable: Belden 9409 or equivalent.

Earth-leakage protection

Connection of the rectangular-sensor secondary

circuit

Use the cable shipped with the rectangular sensor.

Neutral protection

■ Three pole circuit breaker:
\square neutral protection is impossible with Micrologic A, E
\square Masterpact equipped with Micrologic P or H
\square the current transformer for external neutral is
necessary (the wiring diagram is identical to the one used for the residual earth-fault protection)

- Four pole circuit breaker:
\square Masterpact equipped with Micrologic A, E, P or H \square the current transformer for external neutral is not necessary.

Zone selective interlocking

Zone-selective interlocking is used to reduce the
electrodynamic forces exerted on the installation by shortening the time required to clear faults, while maintaining time
discrimination between the various devices.
A pilot wire interconnects a number of circuit breakers equipped with Micrologic $A / E / P / H$ control units, as illustrated in the
diagram above.
The control unit detecting a fault sends a signal upstream and checks for a signal arriving from downstream. If there is a signal from downstream, the circuit breaker remains closed for the full duration of its tripping delay. If there is no signal from downstream, the circuit breaker opens immediately, regardless of the tripping-delay setting.

Fault 1.

Only circuit breaker A detects the fault. Because it receives no signal from downstream, it opens immediately, regardless of its tripping delay set to 0.3 .

Fault 2.

Circuit breakers A and B detect the fault. Circuit breaker A receives a signal from B and remains closed for the full duration of its tripping delay set to 0.3 . Circuit breaker B does not receive a signal from downstream and opens immediately, in spite of its tripping delay set to 0.2.

Wiring

- Maximum impedance: $2.7 \Omega / 300 \mathrm{~m}$.
- Capacity of connectors: 0.4 to $2.5 \mathrm{~mm}^{2}$.
- Wires: single or multicore.
- Maximum lenght: 3000 m .
- Limits to device interconnection:
- the common ZSI - OUT (Z1) and the output ZSI - OUT (Z2) can be connected to a maximum of 10 upstream device \square a maximum of 100 downstream devices may be connected to the common ZSI - IN (Z3) and to an input ZSI-IN CR (Z4) or GF (Z5).

(1) Modbus termination is mandatory, see ULP system user guide TRV99101.

Fixed, electrically operated Masterpact NT and NW Connection to the communication interface module

Withdrawable Masterpact NT and NW

Connection to the I/O and communication interface module

DB416708.eps

Break
cord

ULP cable

Masterpact NT and NW

24 V DC external power supply AD module

- The 24 V DC external power-supply (AD module) for the Micrologic control unit (F1- F2+) is not required for basic protections LSIG.
- The 24 V DC external power-supply (AD module) for the programmable contact M2C/M6C is required.
- The 24 V DC external power-supply for the BCM ULP communication module (E1-E2) is required. The same 24 V DC external power supply can be used for the communication devices (IFE, IFM, I/O, FDM).
■ If the 24 V DC external power supply (AD module) is used to supply Micrologic control unit, this power supply shall be used only for supplying Micrologic control units and M2C/M6C.
- The dedicated AD power supplies shall be used only for the Micrologic trip units. If the COM option is used, a second dedicated 24 V DC external power supply shall be used.
- With Micrologic A/E, it is recommended to connect 24 V DC external power-supply (AD module) to the Micrologic control unit (F1-F2+) in order to keep available the display and the energy metering, even if Current < $20 \% \mathrm{In}$.

Note: in case of using the 24 V DC external power supply (AD module), maximum cable length between 24 VDC (G1, G2) and the control unit (F1-, F2+) must not exceed 10 meters.

The BAT battery module, mounted in series upstream of the AD module, ensures an uninterrupted supply of power if the AD module power supply fails.

The internal voltage taps are connected to the botton side of the circuit breaker.
With Micrologic P/H, external voltage taps are possible using the PTE option.
With this option, the internal voltage taps are disconnected and the voltage taps are connected to terminals VN, V1, V2, V3.
The PTE option is required for voltages less than 220 V and greater than 690 V (in which case a voltage transformer is compulsory). For three-pole devices, the system is supplied with terminal VN connected only to the control unit (Micrologic P).
When the PTE option is implemented, the voltage measurement input must be protected against short-circuits. Installed as close as possible to the busbars, this protection function is ensured by a P25M circuit breaker (1 A rating) with an auxiliary contact (cat. no. 21104 and 21117). This voltage measurement input is reserved exclusively for the control unit and must not ever be used to supply other circuits outside the switchboard.

Connection

The maximum length for each conductor supplying power to the trip unit or M6C module is 10 m .

Do not ground F2+, F1-, or power supply output:

- the positive terminal (F2+) on the trip unit must not be connected to earth ground

■ the negative terminal (F1-) on the trip unit must not be connected to earth ground
\square the output terminals (- and +) of the 24 V DC power supply must not be grounded.
Reduce electromagnetic interference:
■ the input and output wires of the 24 V DC power supply must be physically separated as much as possible

- the 24 V DC wires (output of the 24 V DC power supply) shall be twisted together.

■ the 24 V DC wires (output of the 24 V DC power supply) must cross all power cables perpendicularly
■ power supply conductors must be cut to length. Do not loop excess conductor.

Ecodial

Ecodial software is dedicated to LV electrical installation calculation in accordance with the IEC60364 international standard or national standards.

This $4^{\text {th }}$ generation, "Ecodial Advance Calculation 4", offers a new ergonomic and new features:

- operating mode that allows easy calculation in case of installation with different type of sources (parallel transformers, back-up generators...)
- discrimination analysis associating curves checking and discrimination tables
- direct access to protection settings including residual current protections
- easy selection of alternate solutions or manual selection of a product.

Presentation 2
Functions and characteristics A-1
Installation recommendations $B-1$
Dimensions and connections C-1
Electrical diagrams D-1
Tripping curves E-2
Limitation curves
Current limiting E-4
Energy limiting E-5
Catalogue numbers and order form F-1

Additional

characteristics

Tripping curves

Micrologic 2.0

Micrologic 5.0, 6.0, 7.0

Additional characteristics

Earth fault protection (Micrologic 6.0)

(1)

$\lg =\ln \mathbf{x} \ldots$	A	B	C	D	E	F	G	\mathbf{H}	I
$\ln <400 \mathrm{~A}$	0.3	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
$400 \mathrm{~A} \leqslant \ln \leqslant 1200 \mathrm{~A}$	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
$\ln >1200 \mathrm{~A}$	500	640	720	800	880	960	1040	1120	1200

IDMTL curve (Micrologic P and H)

Additional

 characteristics
Limitation curves

Current limiting

Voltage 380/415/440 V AC

Voltage 660/690 V AC

Rated short-circuit current (kA rms)

Additional characteristics

Limitation curves

Energy limiting

Voltage 380/415/440 V AC

Voltage 660/690 V AC

Rated short-circuit current (kA rms)

schneider-electric.com

This international site allows you to access all the Schneider Electric Solution and Product information via : - comprehensive descriptions

- range data sheets
- a download area
- product selectors
- ...

You can also access the information dedicated to your business and get in touch with your Schneider Electric country support.

Schneider Electric			Slo	$\xrightarrow{\text { a }}$
	Products and Serices	Suppor	Your business	Company
		Ecostruxur		
5 Power Management	(10.) Pacens smacomen		(14) Bunno unomeseret	
			- Lighting Controt - Outdoor Lighting Control - Room Control	

Catalogue numbers and order form

Presentation 2
Functions and characteristics A-1
Dimensions and connections C-1
Installation recommendations B-1
Electrical diagrams D-1
Additional characteristics E-1
Retrofit solutions ${ }^{(*)}$
Connections for fixed devices F-2
Connections for drawout devices F-3
Masterpact NT
Connection F-4
Micrologic control unit, communication option, accessories F-5
Remote operation F-6
Chassis locking and accessories F-7
Clusters F-8
Circuit breaker locking and accessories F-9
Mechanical interlocking for source changeover F-10
Indication contacts F-11
Instructions F-12
Communication, monitoring and control, for NT/NW F-13
Masterpact NW
Connection F-14
Micrologic control unit, communication option, accessories F-15
Remote operation F-16
Chassis locking and accessories F-17
Clusters F-18
Circuit breaker locking and accessories F-19
Mechanical interlocking for source changeover F-20
Indication contacts F-21
Instructions F-22
Communication, monitoring and control F-23
Masterpact NT and NW F-24

Connections for fixed devices

To replace a Masterpact M with a Masterpact NW, order a retrofit device (without connections) and select a set of connectors corresponding to the replaced device.
The Masterpact NW is installed in exactly
the same place as the old Masterpact M device, without any modifications required on the switchboard.

Horizontal rear connection			
Device to be replaced	Connection to be ordered		
Masterpact M08 to M12			
Type N1/NI			
	3P		4P
Top 3x	EF548951	4 x	EF548951
Bottom 3x	EF548964	4 x	EF548964
Type H1/H2/HI/HF			
Top 3x	EF548954	4 x	EF548954
Bottom 3x	EF548965	4 x	EF548965
Masterpact M16			
Type N1/NI/H1/H2/HI/HF			
Top 3x	EF548954	4 x	EF548954
Bottom 3x	EF548965	4 x	EF548965
Masterpact M20 and M25			
Type N1/NI/H1/H2/HI/HF			
Top 3x	EF548957	4 x	EF548957
Bottom 3x	EF548958	4 x	EF548958
Masterpact M32			
Type H1/H2/HI/HF			
Top 1x	EF548962	1 x	EF548960
Bottom 1x	EF548961	1 x	EF548960
Vertical rear connection			
Device to be replaced	Connection to be ordered		
Masterpact M08 to M12			
Type N1/NI			
	3P		4P
Top 3x	EF548952	4 x	EF548952
Bottom 3x	EF548952	4 x	EF548952
Type H1/H2/HI/HF			
Top 3x	EF548953	4 x	EF548953
Bottom 3x	EF548953	4 x	EF548953
Masterpact M16			
Type N1/NI/H1/H2/HI/HF			
Top 3x	EF548953	4 x	EF548953
Bottom 3x	EF548953	4 x	EF548953
Masterpact M20 and M25			
Type N1/NI/H1/H2/HI/HF			
Top 3x	EF548956	4 x	EF548956
Bottom 3x	EF548956	4 x	EF548956
Masterpact M32			
Type H1/H2/HI/HF			
Top 1x	EF548959	1 x	EF548963
Bottom 1x	EF548959	1 x	EF548963
Installation kits			
Device to be replaced	kit to be ordered		
Masterpact M08 to M12			
Type N1/NI/H1/H2/HI/HF			
	3P		4P
1 x	EF548927	1 x	EF548927
Power isolation kits (optional)			
Device to be replaced	kit to be ordered		
Masterpact M08 to M12			
Type N1/NI/H1/H2/HI/HF			
	3P		4P
1 x	EF548928	1 x	EF548928
Auxiliaries wires strand			
Device to be replaced	kit to be ordered		
Masterpact M08 to M12			
Type N1/NI/H1/H2/HI/HF			
	3P		4P
1 x	EF548930	1 x	EF548930

Retrofit solutions ${ }^{(*)}$

Connections for drawout devices

To replace a Masterpact M with a Masterpact NW, order a retrofit device (without connections) and select a set of connectors corresponding to the replaced device.
The Masterpact NW is installed in exactly the same place as the old Masterpact M device, without any modifications required on the switchboard.
(*) For higher ratings (4000-6300 A) or for other Retrofit solutions, please contact Schneider Electric services.

Catalogue numbers: spare parts

Masterpact NT Connection

	Top and bottom	250/630-1600 A	33588	33589
	Installation manual		47102	

		For fixed and drawout front-connected circuit breakers	33644	\| 33645
		Installation manual	47102	
Spreaders / Replacement kit 250/630-1600 A (3 or 4 parts)				
	000	For fixed and drawout front and rear-connected circuit breakers	33622	33623

	For fixed and drawout front and rear-connected circuit breakers	\|33622	33623
	Installation manual	47102	
Interphase barriers / Replacement kit (3 or 4 parts)			
	For fixed and drawout front and rear-connected circuit breakers	33648	33648
	For drawout rear-connected circuit breakers	33768	33768
	Installation manual	47102	
Arc chute screen (1 part)			
	For fixed front-connected circuit breakers	47335	47336
	Installation manual	47102	

Catalogue numbers: spare parts
 Masterpact NT
 Micrologic control unit, communication option, accessories

Replacement parts for Micrologic control units
Long-time rating plug (limits setting range for higher accuracy) / 1 part

DB404394.eps	Standard	0.4 at $1 \times \mathrm{lr}$	33542
	Low-setting option	0.4 at $0.8 \times \mathrm{lr}$	33543
	High-setting option	0.8 at $1 \times \mathrm{lr}$	33544
	Without long-time p		33545
Battery + cover			
	Battery (1 part)Cover (1 part)		33593
		For Micrologic A, E	33592
		For Micrologic P and H	47067

Communication option
Ethernet interface LV breaker
Ethernet interface for LV breakers and gateway

LV434010
LV434011

TRV00210
LV434063
33099
47075
DOCA0084EN-00
DOCA0055EN-00

Accessories
External sensors
External sensor for earth-fault protection (TCE) / 1 part
Sensor rating
400/1600 A
33576

33576

Source ground return (SGR) earth-fault protection / 1 part

	External sensor (SGR)	33579
等	MDGF summing module	48891

Rectangular sensor for earth-leakage protection + Vigi cable / 1 part

Vigi cable or external voltage cable / 1 part

Vigi cable or external voltage cable (1 part)	47090

External power supply module (AD) / 1 part

5	$24-30$ V DC	54440
U	$48-60 \mathrm{~V}$ DC	54441
	100-125 V DC	54442
-	110-130 V AC	54443
,	200-240 V AC	54444
	$380-415$ V AC	54445
Battery module (BAT) / 1 part		
1 battery	24 V DC	54446

Test equipments / 1 part

Hand held test kit (HHTK)	33594
Full function test kit (FFTK)	33595
Test report edition come from FFTK	34559
FFTK test cable 2 pin for STR trip unit	34560
FFTK test cable 7 pin for Micrologic trip unit	33590

Catalogue numbers:
spare parts

Masterpact NT
Remote operation

Remote operation

Gear motor

$\stackrel{\circ}{\circ}$	MCH (1 part)		
	AC $50 / 60 \mathrm{~Hz}$	48 V	33186
		100/130 V	33176
		200/240 V	33177
		$277 / 415 \mathrm{~V}$	33179
		440/480 V	33179
		+ resistor	33193
	DC	24/30 V	33185
		48/60 V	33186
		100/125 V	33187
		200/250 V	33188
	Terminal block (1 part)	For fixed circuit breaker	47074
		For drawout circuit breaker	33098
Fixed. Drawout.	Installation manual		47103
Closing and opening release (XF or MX)			
	Standard coil (1 part)		
	AC $50 / 60 \mathrm{~Hz}$	12 V DC	33658
	DC	$24 / 30 \mathrm{~V}$ DC, 24 VAC	33659
		$48 / 60$ V DC, 48 V AC	33660
		100/130 V AC/DC	33661
		200/250 V AC/DC	33662
		277 V AC	33663
		380/480 V AC	33664
	Communicating coil (1 part)		
	$\begin{aligned} & \text { AC } 50 / 60 \mathrm{~Hz} \\ & \text { DC } \end{aligned}$	12 V DC	33032
		24/30 V DC, 24 VAC	33033
		$48 / 60$ V DC, 48 V AC	33034
		100/130 V AC/DC	33035
		200/250 V AC/DC	33036
		277 V AC	33037
		380/480 V AC	33038
	Terminal block (1 part)	For fixed circuit breaker	47074
		For drawout circuit breaker	33098

Catalogue numbers: spare parts

Masterpact NT

Chassis locking and accessories

	Breaker mismatch protection (VDC)	33767
	Installation manual	47104

Chassis accessories
Auxiliary terminal shield (CB) / 1 part

Installation manual
47104

Catalogue numbers:
spare parts

Masterpact NT

Clusters

Clusters

1 disconnecting contact cluster for chassis (see table below) 1 part
64906

Table : number of clusters required for the different chassis models

Chassis rating (A)	Masterpact NT	
	3P	$\mathbf{4 P}$
250	12	18
630	12	18
800	12	18
1000	12	18
1250	12	18
1600	18	24

Note: the minimum order is 6 parts.

Racking handle / 1 part

Masterpact NT
Circuit breaker locking and accessories

Circuit breaker locking
Pushbutton locking device / 1 part

By padlocks
| 33897

Installation manual
|47103
OFF position locking / 1 part

By padlocks + BPFE support
By Profalux keylocks + BPFE support

Profalux	1 lock with 1 key + adaptation kit	64918
	2 locks 1 key + adaptation kit	64919
1 keylock Profalux (without adaptation kit):	identical key not identified combination	33173
	identical key identified 215470 combination	33174
	identical key identified 215471 combination	33175
By Ronis keylocks + BPFE support		
Ronis	1 lock with 1 key + adaptation kit	64920
	2 locks 1 key + adaptation kit	64921
1 keylock Ronis (without adaptation kit):	identical key not identified combination	33189
	identical key identified EL24135 combination	33190
	identical key identified EL24153 combination	33191
	identical key identified EL24315 combination	33192
Adaptation kit (without keylock):	adaptation kit Profalux	47515
	adaptation kit Ronis	47516
	adaptation kit Kirk	47517
	adaptation kit Castell	47518
Installation manual		47103

Other circuit breaker accessories
Mechanical operation counter/1 part

Operation counter CDM
33895

Installation manual	47103

Escutcheon and accessories / 1 part

Front cover
| 47094

Installation manual
47103

Spring charging handle / 1 part

Spring charging handle
| 47092

Installation manual
47103
Arc chute for Masterpact NT / 1 part

		3P	
Type H1/H2/HA	$3 \times$	LV846737SP	$4 \times$
Type L1	$3 \times$	47095	$4 \times$

[^11]Installation manual

Catalogue numbers:
spare parts

Masterpact NT
Mechanical interlocking for source changeover

Mechanical interlocking for source changeover
Interlocking using connecting rods

Complete assembly with 2 adaptation fixtures + rods
2 Masterpact NT fixed devices
33912
2 Masterpact NT drawout devices
33913
Note: the installation manual is enclosed.

Interlocking using cables ${ }^{(1)}$

Choose 2 adaptation fixtures (1 for each breaker) +1 set of cables

	Choose 2 adaptation fixtures (1 for each breaker) + 1 set of cables	
	1 adaptation fixture for Masterpact NT fixed devices	33200
	1 adaptation fixture for Masterpact NT drawout devices	33201
	1 set of 2 cables	33209
	(1) Can be used with any combination of NT or NW, fixed or drawout devices.	

Cable-type door interlock

Catalogue numbers: spare parts
 Masterpact NT
 Indication contacts

Indication contacts
ON/OFF indication contacts (OF) / 1 part

Catalogue numbers: spare parts

Masterpact NT
Instructions

Instructions		
Chassis accessories		47104
Circuit breaker accessories		47103
Fixed and drawout circuit breaker		47102
Micrologic user manual	20/50 (French)	33076
	20/50 (English)	33077
	2A/7A (French)	33079
	2A/7A (English)	33080
	2E/6E (French)	33079
	2E/6E (English)	33080
	5P/7P (French)	33082
	5P/7P (English)	33083
	5H/7H (French)	33085
	5H/7H (English)	33086
NT user manual	French	47106
	English	47107
Modbus communication notice for manual		33088

Catalogue numbers:
 Communication, spare parts
 monitoring and control, for NT/NW

Communication option		
	IFE Ethernet interface for LV breaker Ethernet interface for LV breakers and gateway	$\begin{array}{\|l\|} \hline \text { LV434010 } \\ \hline \text { LV434011 } \\ \hline \end{array}$
\%	IFM Modbus-SL interface module	TRV00210
等	I/O application module	LV434063
$\overline{\bar{\circ}} \cdot \sqrt{n}$	6 wires terminals drawout (1 part)	47850
$\sqrt[4]{5}$	6 wires terminals fixed (1 part)	47075
(4)...	User guide IFE	DOCA0084EN-00
	User guide I/O application module	DOCA0055EN-00
Monitoring and control		
ULP display module ${ }^{(1)}$		
	Switchboard front display module FDM121 FDM mounting accessory (diameter 22 mm)	$\begin{array}{\|l\|} \hline \text { TRV00121 } \\ \hline \text { TRV00128 } \end{array}$
Ethernet display module		
	Switchboard front display module FDM128	LV434128
ULP wiring accessories		
	Breaker ULP cord L $=0.35 \mathrm{~m}$	LV434195
	Breaker ULP cord L $=1.3 \mathrm{~m}$	LV434196
	Breaker ULP cord L=3 m	LV434197
	10 stacking connectors for communication interface modules	TRV00217
	10 Modbus line terminators	VW3A8306DRC ${ }^{(2)}$
\%	5 RJ45 connectors female/female	TRV00870
	10 ULP line terminators	TRV00880
	10 RJ45/RJ45 male cord L $=0.3 \mathrm{~m}$	TRV00803
	10 RJ45/RJ45 male cord L $=0.6 \mathrm{~m}$	TRV00806
	$5 \mathrm{RJ} 45 / \mathrm{RJ} 45$ male cord L $=1 \mathrm{~m}$	TRV00810
	$5 \mathrm{RJ} 45 / \mathrm{RJ} 45$ male cord L $=2 \mathrm{~m}$	TRV00820
	$5 \mathrm{RJ} 45 / \mathrm{RJ} 45$ male cord L $=3 \mathrm{~m}$	TRV00830
	1 RJ45/RJ45 male cord L = 5 m	TRV00850

(1) For measurement display with Micrologic A, E, P and H.
(2) See Telemecanique catalogue.

Catalogue numbers:
spare parts

Masterpact NW
Connection

Horizontal mounting

Installation manual

Drawout circuit breakers
Front connection / Replacement kit (3 or 4 parts)

$$
800-1600 \mathrm{~A}
$$

$800-2000 \mathrm{~A}$
$2500 / 3200 \mathrm{~A}$
4000 A
$4000 \mathrm{~b} / 5000 \mathrm{~A}$
6300 A
Installation man
kit (3 or 4 parts)
$800-1600 \mathrm{~A}$
$2000 / 3200 \mathrm{~A}$

Installation manual
Rear connection (vertical or horizontal mounting) / Replacement kit (3 or 4 parts)

Horizontal mounting

$800-2000$ A types N1/H1/H2	Vertical	
800-1600 A types H3/L1	Horizontal	
$2500 / 3200$ A types H1/H2	Vertical	
2000/3200 A types H3/L1	Horizontal	
4000 A	Vertical	
	Horizontal	
$4000 \mathrm{~b} / 5000$ A	Vertical	$2 x$
	Horizontal	$2 x$
6300 A	Vertical	$2 x$
Intallation		

47964	47965	
47964		47965
47966		47967
47966		47967
47968		47969
47970	$2 x$	47971
47966	$2 x$	47967
47966	$2 x$	47969
47968		
47950		

Connection accessories

Grounding kit KTM

Grounding kit for Masterpact NW fixed

Side plate kit
Device earthing kit

Grounding kit for Masterpact NW drawout

Catalogue numbers: spare parts
 Masterpact NW
 Micrologic control unit, communication option, accessories

Replacement parts for Micrologic control units
Long-time rating plug (limits setting range for higher accuracy) / 1 part

	Standard	0.4 at $1 \times \mathrm{lr}$	33542
	Low-setting option	0.4 at $0.8 \times \mathrm{lr}$	33543
	High-setting option	0.8 at $1 \times \mathrm{lr}$	33544
	Without long-time protection		33545
Battery + cover			
	Battery (1 part) Cover (1 part)		33593
		For Micrologic A, E	33592
		For Micrologic P and H	47067

Communication option

	IFE	Ethernet interface for LV breaker	LV434010
	Ethernet interface for LV breakers and gateway		LV434011
	$\frac{\text { IFM Modbus-SL interface module }}{\text { I/O application module }}$		TRV00210
			LV434063

User guide IFE
DOCA0084EN-00
User guide I/O application module
DOCA0055EN-00

Accessories

External sensors

External sensor for earth-fault protection (TCE) / 1 part

> Sensor rating

$400 / 2000$ A	34035
$1000 / 4000$ A	34036
$4000 / 6300$ A	48182

Source ground return (SGR) earth-fault protection / 1 part

External sensor (SGR)
MDGF summing module
48891

Rectangular sensor for earth-leakage protection + Vigi cable / 1 part (up to 3200 A)

	$280 \mathrm{~mm} \times 115 \mathrm{~mm}$	3357
寕	$470 \mathrm{~mm} \times 160 \mathrm{~mm}$	3357

Test equipments / 1 part

Hand held test kit (HHTK)
Full function test kit (FFTK)
Test report edition come from FFTK
FFTK test cable 2 pin for STR trip unit
FFTK test cable 7 pin for Micrologic trip unit

33594
33595
34559
34560
33590

Catalogue numbers:
spare parts

Masterpact NW
Remote operation

Remote operation

Gear motor

Masterpact NW

Chassis locking and accessories

Breaker mismatch protection (VDC)
33767

Chassis accessories
Auxiliary terminal shield (CB)/1 part

	800/4000 A	3P	64942
		4 P	48596
	$4000 \mathrm{~b} / 6300 \mathrm{~A}$	3P	48597
		4 P	48598

Safety shutters + locking block / 1 part				
	800/4000 A	3 P		48721
		4P		48723
	4000b/6300 A	3 P		48722
		4 P		48724
	Installation manual			47952
Shutter locking block (for replacement) / 1 part				
an	2 parts for 800/4000 A			48591
	Installation manual			47952
Earthing kit for chassis				
			3P	4P
Types for N1/H1/NA/HA				
			48433	48434

Note: the installation manual is enclosed.

Catalogue numbers: spare parts

Masterpact NW

Clusters

Clusters

1 disconnecting contact cluster for chassis (see table below) (part 1)
64906

Chassis rating (A)	Masterpact NW 3P				Masterpact NW 4P			
	N1	H1/H2	H3	L1	N1	H1/H2	H3	L1
250		12 (H1)						
630	6	12		24	8	16		32
800	6	12		24	8	16		32
1000	6	12		24	8	16		32
1250	6	12		24	8	16		32
1600	12	12		24	16	16		32
2000		24	24	42		32	32	56
2500		24	24			32	32	
3200		36	36			48	48	
4000		42	42			56	56	
4000b		72				96		
5000		72				96		
6300		72				96		

Note: the minimum order is 6 parts.

Racking handle

DC rear connection

Serial connection kit

Masterpact NW
Circuit breaker locking and accessories

Circuit breaker locking
Pushbutton locking device / 1 part

By padlocks
48536

OFF position locking / 1 part
Installation manual
| 47951

By padlocks
 By Profalux keylocks

Profalux	1 lock with 1 key + adaptation kit	64928
	2 locks 1 key + adaptation kit	64929
	2 locks 2 different keys + adaptation kit	64930
1 keylock Profalux (without adaptation kit):	identical key not identified combination	33173
	identical key identified 215470 combination	33174
	identical key identified 215471 combination	33175
By Ronis keylocks		
Ronis	1 lock with 1 key + adaptation kit	64931
	2 locks 1 key + adaptation kit	64932
	2 locks 2 different keys + adaptation kit	64933
1 keylock Ronis (without adaptation kit):	identical key not identified combination	33189
	identical key identified EL24135 combination	33190
	identical key identified EL24153 combination	33191
	identical key identified EL24315 combination	33192
Adaptation kit (without keylock):	adaptation kit Profalux / Ronis	64925
	adaptation kit Kirk	64926
	adaptation kit Castell	64927
Installation manual		79

Other circuit breaker accessories
Mechanical operation counter/1 part

Operation counter CDM
| 48535

Installation manual
| 47951

Escutcheon	Cover	Blanking plate	Installation manual	\| 47951
Front cover (3P / 4P) / 1 part				
\%		Front cover		\|47939
		Installation manual		\| 47951
Spring charging handle / 1 part				
\cdots		Spring charging han		\| 47940

Spring charging handle

5	Installation manual				47951
Arc chute for Masterpact NW / 1 part					
			3P		4P
	Type N1/NA/HF	3 x	47935	4 x	47935
	Type H1/H2/HA (NW08 to NW40)	3 x	47935	4 x	47935
	Type H1/H2/HA (NW4Ob to NW63)	6 x	47936	8 x	47936
	Type H3/H10/HA10	3 x	47936	4 x	47936
	Type L1	3 x	47937	4 x	47937
	Type NW DC	$3 \times$	47934	4 x	47934
	Installation manual				47951

Catalogue numbers:
spare parts

Masterpact NW

Mechanical interlocking
for source changeover

Mechanical interlocking for source changeover

Interlocking of 2 devices using connecting rods

Complete assembly with 2 adaptation fixtures + rods
2 Masterpact NW fixed devices
48612
2 Masterpact NW drawout devices
Can be used with 1 NW fixed + 1 NW drawout.
Note: the installation manual is enclosed.

Interlocking of 2 devices using cables ${ }^{(*)}$

Choose 2 adaptation sets (1 for each device +1 set of cables)
1 adaptation fixture for Masterpact NW fixed devices
1 adaptation fixture for Masterpact NW drawout devices
(*) Can be used with any combination of NT or NW, fixed or drawout devices.

Interlocking of 3 devices using cables

Catalogue numbers: spare parts
 Masterpact NW
 Indication contacts

Indication contacts

ON/OFF indication contacts (OF)/ 12 parts

Combined closed / connected contacts for use with 1 auxiliary contact / 1 part

Catalogue numbers: spare parts

Masterpact NW
Instructions

Instructions		
Chassis accessories		47952
Circuit breaker accessories		47951
Fixed and drawout circuit breaker		47950
User manual	NW AC (French)	47954
	NW AC (English)	47955
	NW DC (French)	64923
	NW DC (English)	64924
Micrologic user manual	20/50 (French)	33076
	20/50 (English)	33077
	2A/7A (French)	33079
	2A/7A (English)	33080
	2E/6E (French)	33079
	2E/6E (English)	33080
	5P/7P (French)	33082
	5P/7P (English)	33083
	5H/7H (French)	33085
	5H/7H (English)	33086
Modbus communication notice for manual		33088

Communication，monitoring and control

Switchboard front display module FDM128
LV434128

ULP wiring accessories

Breaker ULP cord $\mathrm{L}=0.35 \mathrm{~m}$	LV434195
Breaker ULP cord $\mathrm{L}=1.3 \mathrm{~m}$	LV434196
Breaker ULP cord $\mathrm{L}=3 \mathrm{~m}$	LV434197

	10 stacking connectors for communication interface modules	TRV00217
$\stackrel{\circ}{\circ}$	10 Modbus line terminators	VW3A8306DRC ${ }^{(2)}$
	$5 \mathrm{RJ45}$ connectors female／female	TRV00870
$\frac{8}{4}$	10 ULP line terminators	TRV00880
\％圈	10 RJ45／RJ45 male cord L $=0.3 \mathrm{~m}$	TRV00803
$\stackrel{\ddagger}{ \pm}$	10 RJ45／RJ45 male cord L $=0.6 \mathrm{~m}$	TRV00806
领	5 RJ45／RJ45 male cord L＝ 1 m	TRV00810
侐通	$5 \mathrm{RJ45} / \mathrm{RJ} 45$ male cord L $=2 \mathrm{~m}$	TRV00820
	5 RJ45／RJ45 male cord L $=3 \mathrm{~m}$	TRV00830
	1 RJ45／RJ45 male cord L $=5 \mathrm{~m}$	TRV00850

[^12]（2）See Telemecanique catalogue．

To indicate your choice, check the applicable square boxes
and enter the appropriate information in the rectangles \square

Circuit breaker or switch-disconnector		Qty
Masterpact type	NT $\quad \square$ NW	
Rating A		
Sensor rating A		
Circuit breaker N1, H1, H2, H3, L1		
Special circuit breaker H2 anticorrosion, H10 (NW)		
Special circuit breaker NW16/32 H1T, NT16 H2T		
Switch-disconnector NA, HA, HF, ES, HA10 (NV		
Number of poles 3 or 4		
Brand Schneide	Electric	X
Option: neutral on right side (NW)		
Type of equipment	Fixed	
	Drawout with chassis	
	Drawout without chassis (moving part only) Chassis alone	

Micrologic control unit				
A - ammeter	2.0	5.0	6.0	7.0
E-energy	2.0	5.0	6.0	
P-power meter		5.0	6.0	7.0
H - harmonic meter		5.0	6.0	7.0

LR-long-time rating plug
Standard 0.4 to 1 Ir
Low setting 0.4 to 0.8 Ir
High setting 0.8 to 1 lr
LR OFF

AD - external power-supply module	V	
BAT - battery module		

TCE - external sensor (CT) for neutral
and residual earth-fault protection
TCE - external sensor (CT) for over sized neutral
(3P - Micrologic P/H) and residual earth-fault protection
TCW - external sensor for SGR protection

Rectangular sensor	NT $(280 \times 115 \mathrm{~mm})$
for earth-leakage protection	NW $(470 \times 160 \mathrm{~mm})$

PTE - external voltage connector

Communication

COM module

Eco COM module

Front Display Module (FDM121)	Mounting accessories		
Breaker ULP $L=0.35 \mathrm{~m}$ Cord $L=1.3 \mathrm{~m}$ $L=3 \mathrm{~m}$			
Connection			
Horizontal Vertical Front	Top	Bottom	
	Top	Bottom	
	Top	Bottom	
Vertical-connection adapters Cable-lug adapters Arc chute screen	NT - FC fixed, draw. NT-FC fixed, draw. NT - FC fixed		
Interphase barriers	NT, N	drawout	
Spreaders	NT fix		
Disconnectable front connection adapter	NW fi		
Lugs for 240° or 300° cables	NT fix	out	

Micrologic control unit functions:

2.0 : basic protection (long time + inst.)
5.0 : selective protection (long time + short time + inst.)
6.0 : selective + earth-fault protection
(long time + short time + inst. + earth-fault)
7.0 : selective + earth-leakage protection
(long time + short time + inst. + earth-leakage)

Notes

Notes

35, rue Joseph Monier	As standards, specifications and designs change from
CS 30323	time to time, please ask for confirmation of the
92506 Rueil Malmaison Cedex	information given in this publication.
France	Publication: Schneider Electric Industries SAS
RCS Nanterre 954503439	Photos: Schneider Electric
Capital social $896313776 €$	Publishing: Altavia St Etienne

[^0]: Smart Panels connect you to energy savings

[^1]: Presentation
 Installation recommendations
 >B-1
 Dimensions and connections
 $>C-1$
 Electrical diagrams
 >D-1
 Additional characteristics
 >E-1
 Catalogue numbers and order form
 >F-1

[^2]: 1 Long-time current setting and tripping delay.
 2 Overload signal (LED).
 3 Short-time pick-up and tripping delay.
 4 Instantaneous pick-up.
 5 Earth-leakage or earth-fault pick-up and tripping delay.
 6 Earth-leakage or earth-fault test button.
 7 Long-time rating plug screw.
 8 Test connector.
 9 Lamp + battery test and indications reset.
 10 Indication of tripping cause.
 11 High-resolution screen.
 12 Measurement display.
 13 Maintenance indicators.
 14 Protection settings.
 15 Navigation buttons.
 16 Hole for settings lockout pin on cover.

[^3]: (1) Available via the communication system only.
 (2) Available for Micrologic P/H only.
 (3) FDM121 only.

[^4]: Connection with FDM121 display unit.

[^5]: OFF position locking using a keylock.

[^6]: "Lockout after fault" option. This option makes it necessary to manually reset the device following fault tripping.

[^7]: Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test.
 The values indicated for the cross-sectional area of the vents should be considered as general indications only given that the thermal performance of a switchboard with natural ventilation depends on many parameters, e.g. shape, porosity and location of vents and air flow within the switchboard.

[^8]: Note:
 (1) Without escutcheon.
 (2) With escutcheon.

[^9]: Note: recommended connection screws: M10 class 8.8.

[^10]: F : datum.

[^11]: 4P LV846737SP
 47095

[^12]: （1）For measurement display with Micrologic A，E，P and H．

