Power Monitoring Equipment General Information

Power monitoring equipment (F-MPC)
 F-MPC60, F-MPC30, F-MPC04 series

■ Description

- FUJI power monitoring equipment (F-MPC) realizes fine power management to contribute to energy-saving.
- We can offer you various F-MPC equipment such as F-MPC04 series power monitoring unit that measures electric power of one to multi-circuits, and compact size F-MPC60G, F-MPC30 series multifunctional digital relay that protects, controls, and measures high-voltage distribution facilities.
- As support tool, a power monitoring system software, F-MPC-Net is also available, which collects and analyzes data measured by F-MPC.
- As related products of F-MPC, molded case circuit breaker with ZCT and split type current transformer are introduced.

■ Power monitoring equipment used in power distribution system

Multiple function protectors and controllers F-MPC60, F-MPC30 series

■ Description

- FUJI multiple function protector and controller (F-MPC) performs energy control to contribute to energy-saving. The F-MPC60G, F-MPC60B and F-MPC30 are a kind of multifunctional digital relays.
- Although these series are very compact, they integrate multiple functions in a compact body, such as protection, measurement, operation, and monitoring of high-voltage power distribution and switching facilities. They can also transmit data obtained from these functions to upper level controllers.

Functions
The functions of F-MPC60 and F-MPC30 series are listed below.

Series		F-MPC60G	F-MPC60B	F-MPC30
Type		UM63FN-E \square AK	UM43FG-E5AK	UM5ACG-H5R
Installation location		Receiving or feeder		Feeder
Application (phase: line)		3:3, 3:4		3:3, 3:4
VT voltage	Input	2VT/3VT star		-
	Voltage indication	Between phases, between lines		-
Ground fault system	System type	Direct/resistance		Direct/resistance
IO detection	${ }^{1}$ RResidual (3XCT)	\bigcirc -		\bigcirc
	(2)Tertiary winding (100/5A)	0 - $0^{\text {a }}$		\bigcirc
	(3)ZCT (5 to 100/5A)	O $\square^{\text {a }}$		\bigcirc
	(4)ZCT (5 to 400/5A)	$\bigcirc \times$		\bigcirc
	(5)ZCT ($200 / 1.5 \mathrm{~mA}$)	- ${ }^{\text {a }}$		-
	© 6 ZCT (100/1A) or (70/1A) or secondary I input (0.002 to 0.4 A)	-		-
E0 detection * Feeder: Depending on MN signal.	EVT (3Ry= 110V)	-		-
	EVT (3Ry= 190V)	-		-
	ZPD-1 (FUJI-made)	-		-
	MN signal output	-		-
	MN signal input	-		-
Protective characteristic (current)	SI, VI, LT, EI, I ${ }^{2}$ t	\bigcirc		(without $\mathrm{I}^{2} \mathrm{t}$)
	DT1 (short-time)	\bigcirc		\bigcirc
	DT2 (definite-time)	\bigcirc		\bigcirc
Control voltage	Rating	100V DC		100/200V DC
	Allowable range	80 to143V DC		80 to 286V DC
Transducer output selection	No. of output pole	6		-
	(Function and terminal)	Select		-
No. of DI/DO		8:8		1:3
No. of CPU		2		1
External plug		-		\bigcirc
CB close/open	CB making slow-down monitoring function	\bigcirc		-
	Harmonic voltage (3, 5, 7, Total)	-		-
	Harmonic current (3, 5, 7, Total)	\bigcirc		-
	Demand current	\bigcirc		-
Display mode	All or part: changeable	\bigcirc		- (All only)

Energy Contril Equipment
Power Monitoring Equipment
Multiple function protectors and controllers F-MPC60G, F-MPC60B, F-MPC30

■ Functions (continued)

Series			F-MPC60G	F-MPC60B	F-MPC30
Type			UM63FN-E \square AK	UM43FG-E5AK	UM5ACG-H5R
Installation location			Receiver	Receiver or feeder	Feeder
Protection	Overcurrent Instantaneous	50	\bigcirc	\bigcirc	\bigcirc
	Overcurrent Short-time	51DT1	\bigcirc	\bigcirc	\bigcirc
	Overcurrent Definite-time	51DT2	\bigcirc	\bigcirc	\bigcirc
	Overcurrent Inverse-time *1	51	\bigcirc	\bigcirc	*2
	Ground-fault Instantaneous	50G	\bigcirc	\bigcirc	\bigcirc
	Overcurrent Inverse-time *2	51G	\bigcirc	\bigcirc	\bigcirc
	Ground fault directional	67	-	-	-
	Phase-loss	46	\bigcirc	\bigcirc	-
	Inverse-phase	47	\bigcirc	\bigcirc	-
	Voltage established	84	-	-	-
	Undervoltage	27	\bigcirc	\bigcirc	-
	Overvoltage	59	\bigcirc	\bigcirc	-
	Ground-fault overvoltage	64	-	-	-
	Current prealarm	OCA	\bigcirc	\bigcirc	\bigcirc
	Ground-fault current prealarm	OCGA	\bigcirc	\bigcirc	\bigcirc
Measurement	Current (r, s, t)	A	\bigcirc	\bigcirc	\bigcirc
	Voltage (line)	V	\bigcirc	\bigcirc	-
	Voltage (phase)		\bigcirc	\bigcirc	-
	Active power (\pm)	W	\bigcirc	\bigcirc	-
	Reactive power (\pm)	Var	\bigcirc	\bigcirc	-
	Power-factor (\pm)	PF	\bigcirc	\bigcirc	-
	Frequency	Hz	\bigcirc	\bigcirc	-
	Active electric energy (+)	WHM	\bigcirc	\bigcirc	-
	Active electric energy (-)	WHM	\bigcirc	\bigcirc	-
	Reactive electric energy (+)	VarH	\bigcirc	\bigcirc	-
	Reactive electric energy (-)	VarH		\bigcirc	-
	Ground fault (zero-phase) voltage	V0	-	-	-
	Ground fault (zero-phase) current	A0	\bigcirc	\bigcirc	\bigcirc
	Harmonic current (3, 5, 7, Total)	HA	\bigcirc	\bigcirc	-
	Harmonic voltage (3, 5, 7, Total)	HV	\bigcirc	-	-
	Demand current (r, s, t)	DA	\bigcirc	\bigcirc	-
	Demand active power	DW	\bigcirc	\bigcirc	-
	Max. zero-phase current value	Y	\bigcirc	\bigcirc	\bigcirc
	Max. zero-phase voltage value		-	-	-
	Max. demand current value (r, s, t)		\bigcirc	\bigcirc	-
	Max. demand power		\bigcirc	\bigcirc	-
	Total electric energy (+)		\bigcirc	\bigcirc	-
	Total electric energy (-)		\bigcirc	\bigcirc	-
	Min. voltage value (between lines)		\bigcirc	\bigcirc	-
Preventive maintenance	50 (INST) Operation Count		\bigcirc	\bigcirc	\bigcirc
	51DT1 Operation Count		\bigcirc	\bigcirc	\bigcirc
	51DT2 Operation Count		\bigcirc	\bigcirc	\bigcirc
	51 operation Count		\bigcirc	\bigcirc	\bigcirc
	67DG Operation Count		-	-	-
	50G Operation Count		\bigcirc	\bigcirc	\bigcirc
	51G Operation Count		\bigcirc	\bigcirc	\bigcirc
	OCA Operation Count		\bigcirc	\bigcirc	\bigcirc
	OCGA Operation Count		\bigcirc	\bigcirc	\bigcirc
	Phase loss Operation Count		\bigcirc	\bigcirc	-
	Inverse phase Operation Count		\bigcirc	\bigcirc	-
	27 Operation Count		\bigcirc	\bigcirc	-
	59 Operation Count		\bigcirc	\bigcirc	-

*1 with SI, VI, LT, EI, and I²t characteristics
Available

- Not available

[^0]■ Features

- Improved visibility

Clear visibility and operability via color LCD.

- Maintains Compatibility with Existing Models

Succeed to some function of F-MPC60B Series such as same dimension, same terminal block and communication. You can use this model without any design change.

- Equipped with Waveform Recording Function for System Failure
Incorporated a function for recording failure waveforms during protective operation. Calendar functions are newly added to support failure analysis.
- Compliant with the IEC Standards

Complies with up-to-date contents of the standards. Supporting
world wide matters is possible. (CE self-declared compliance)

- Evolution of Support Functions with the Loader Software
Equipped with "Relay test assist function (patent pending)" that directs and assists test conditions of selected protecting elements.

Type number nomenclature

CT secondary current
5: 5A
1: 1A

Control power supply
E: 100V AC/DC common use

Item		Specifications
Control power supply		100 VDC (80 to 143 VDC), 100 VAC (85 to 132 VAC) common *
Inrush current		15 A or less, 4.5 ms or less ($100 \mathrm{VAC}, 50 \mathrm{~Hz}$) 13 A or less, 7 ms or less (100 VDC)
Power consumption (main unit)		15 W or less with DC input, 20 VA or less with AC input
FUSE		Contained in control power supply (3 A)
Rated frequency		$50 / 60 \mathrm{~Hz}$ (setting selection)
Rated current (CT secondary)		AC 5 A/1 A: Specify when ordering
Rated voltage (VT secondary)		110 VAC
Zerophase rated current	CT combination	AC 5 A (CT residual circuit,CT tertiary) Note 2: Ratio of CT tertiary is from 5 to 400 A: 5 A can be set (from 5 to 100 A: 5 A steps, from 110 to 400 A : 10 A steps) Note 3: Io/3lo display selectable for CT tertiary
Rated load VA	CT secondary	0.5 VA or less
	VT secondary	1.0 VA or less
Insulation resistance		Between collective electric circuits and ground $: 100 \mathrm{M} \Omega$ or more (500 VDC ohmmeter) Between mutual electric circuits $: 5 \mathrm{M} \Omega$ or more Between contact circuit terminals $: 5 \mathrm{M} \Omega$ or more
Vibration resistance		Oscillation frequency 10 Hz , forward/backward \& left/right double amplitude 5 mm , up/down double amplitude 2.5 mm , for 30 sec . each Oscillation frequency 16.7 Hz , double amplitude 0.4 mm , forward/backward, left/right, up/down, for 10 min . each Oscillation frequency 10 to $59 \mathrm{~Hz}, 0.035 \mathrm{~mm}$ Oscillation frequency 59 to $150 \mathrm{~Hz}, 0.5 \mathrm{G} 10$ to 150 Hz for each axis 8 minutes CLASS I
Shock resistance		30 G, 3-axes 6-directions, 3 times each Peak acceleration 5 G pulse width 11 ms , 3 -axes 6 -directions, 3 times each
Bump resistance		Peak acceleration 10 G pulse width 16 ms , 3-axes 6-directions, 1000 times each
Earthquake resistance		Oscillation frequency 1 to 8.5 Hz , X-axis (horizontal) $3.5 \mathrm{~mm}, \mathrm{Y}$-axis (vertical) 1.5 mm Oscillation frequency 8.5 to 35 Hz , X-axis (horizontal) $1 \mathrm{G}, \mathrm{Y}$-axis (vertical) 0.5 G Method A 1 to $35 \mathrm{~Hz}, 10$ minutes, CLASS I
Dielectric strength		Between collective electric circuits and ground $2 \mathrm{kVAC}{ }^{*^{2}}$, Between mutual electric circuits 2 kVAC However, this excludes RS-485 communication, MN signal wire, transducer output terminal, and kWh P output terminals. ON, OFF, between trip contact circuit terminals $1 \mathrm{kVAC}, 1$ minute.
Electrostatic noise immunity		Metal part contact $\pm 8 \mathrm{kV}$, Panel surface (non-metallic, non-contact) $\pm 15 \mathrm{kV}$
Noise resistance		Oscillation frequency 1 MHz , common mode/differential mode First wave crest height $2.8 \mathrm{kV}, 1 / 2$ damping time 3 to 6 cycles. Repeating frequency 6 to 10 times/1 period of commercial frequency (asynchronous) JEC2501 waveform 2 (ANSI compliant)
		Peak voltage 1.5 kV Square wave impulse noise ($1 \mathrm{~ns} / 1 \mu \mathrm{~s} 10$ minutes) However, MN signal wire, communication wire (RS-485), transducer output wire, and kWh pulse output wire have a peak voltage of 1.0 kV (clamp), square wave impulse noise ($1 \mathrm{~ns} / 1 \mu \mathrm{~s} 10$ minutes)
		Transceiver noise: $10 \mathrm{~V} / \mathrm{m}$ in 140 MHz band, 430 MHz band, 900 MHz band Mobile ($800 \mathrm{MHz} / 1.5 \mathrm{GHz} 0.8 \mathrm{~W}$), PHS (1.9 GHz 10 mW) attached Radiation electromagnetic field immunity: 80 MHz to $1 \mathrm{GHz}, 1.4 \mathrm{GHz}$ to $2.7 \mathrm{GHz} 10 \mathrm{~V} / \mathrm{m}$ CLASS III Spot frequency 80, 160, 380, 450, 900, 1850, 2150 MHz Conduction interference immunity: 150 kHz to $80 \mathrm{MHz}, 10 \mathrm{~V} / \mathrm{m}$, CLASS III
		Electromagnetic emission Conduction: 150 kHz to $30 \mathrm{MHz}, 79 \mathrm{db}$ (up to 500 kHz), 73 db (from 500 kHz) peak value Radiation: 30 MHz to $2.0 \mathrm{GHz}, 40 \mu \mathrm{~V} / \mathrm{m}$ (up to 230 MHz), $47 \mu \mathrm{~V} / \mathrm{m}(230 \mathrm{MHz}$ to 1 GHz) (quasi-peak value/10 m position) $76 \mu \mathrm{~V} / \mathrm{m}$ (from 1 GHz)(peak/3 m position)
		Fast transient/burst Control power: ground collective \& I/O 2 kV , communication (clamp) 1 kV
		Commercial frequency electromagnetic field immunity Continuation $30 \mathrm{~A} / \mathrm{m}, 1$ to $3 \mathrm{~s}: 300 \mathrm{~A} / \mathrm{m}$
Lightning impulse		Between collective electric circuits and ground However, this excludes MN signal, communication wire (RS-485), transducer output wire, and kWh pulse output wire. : $5 \mathrm{kV} 1.2 \times 50 \mu \mathrm{~s} 3$ times each positive and negative Between mutual transformer circuits Between measurement device transformer circuit and control circuit $: 5 \mathrm{kV} 1.2 \times 50 \mu \mathrm{~s} 3$ times each positive and negative Between mutual control circuits $: 3.0 \mathrm{kV} 1.2 \times 50 \mu \mathrm{~s} 3$ times each positive and negative Between contact (trip output) and circuit terminal : $3.0 \mathrm{kV} 1.2 \times 50 \mu \mathrm{~s} 3$ times each positive and negative Between control power supply circuit terminals $: 3.0 \mathrm{kV} 1.2 \times 50 \mu \mathrm{~s} 3$ times each positive and negative Between measurement device transformer circuit terminals : $3.0 \mathrm{kV} 1.2 \times 50 \mu \mathrm{~s} 3$ times each positive and negative Between communication wire and ground ${ }^{* 6}$ $: 1.0 \mathrm{kV} 1.2 \times 50 \mu \mathrm{~s} 3$ times each positive and negative
Overload capacity		CT circuit: (continuous) (short-time) 4 times that of rated value $(20 / 4 \mathrm{~A})$ 40 times that of rated value $(200 / 40 \mathrm{~A}) 1$ second $\times 2$ times, 100 times that of rated value $(500 / 100 \mathrm{~A}) 100 \mathrm{~ms} \times 1$ time
		Io(residual/tertiary) circuit: (continuous)(short-time)4 times that of rated value $(20 / 4 \mathrm{~A})$ 40 times that of rated value $(200 / 40 \mathrm{~A}) 1$ second $\times 2$ times, 70 times that of rated value $(350 / 70 \mathrm{~A}) 100 \mathrm{~ms} \times 1$ time
		VT circuit: 1.25 times that of rated value 10 seconds $\times 1$ time

VT circuit: 1.25 times that of rated value 10 seconds $\times 1$ time

- General specifications (Cont.)

Item	Specifications
Ambient temperature	$-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ (no dew condensation or frost shall be observed): working guarantee $\left(0^{\circ} \mathrm{C}\right.$ to $40^{\circ} \mathrm{C}$: characteristics guarantee)
Storage temperature	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (no dew condensation or frost shall be observed)
Relative humidity	20% to $90 \% \mathrm{RH}$ (no dew condensation shall be observed)
Usage atmosphere	No corrosive gas or excessive dust shall observed
Grounding	D class grounding (100 Ω or less)
Mass	Maximum 1.5 kg (UM63FN-E5A measured)
Permissible instantaneous power failure time	20 ms (continuous operation); however, display will disappear
Note: *1 When protection 27UV is used for other than instantaneous operation (operating time 0 s setting) in the control power AC power supply, use together with an uninterruptible power system	
or AC power supply unit type: UM2P-A1, separately sold).	
*2 Do not apply 2 kVAC between wires. *3 The guaranteed working temperature is the temperature at which operation is guaranteed within two times that of the guaranteed accuracy value at the JEC characteristic guaranteed temperature, and within the JIS temperature impact accuracy. *4 The loader (USB) on the front main unit panel is not considered a communication wire.	

- External I/O Specifications

Item	Specifications		
Input circuit	100 VDC (143 VDC or less)/100 VAC (132 VAC or less) common [DC input] ON voltage: 40 VDC or more and 70 VDC or less / [AC input] ON voltage: 40 VAC or more and 70 VAC or less		
	Number of input points: Select input 8 points, TC disconnect monitor, CB 52a		
Output circuit	CB ON/OFF/trip	Making current: Break current:	15 A (110 VDC), acceptable 15 A (100 VAC inductive loa 0.2 A (110 VDC inductive loa 4 A (100 VAC inductive load
	Other	Switching curren	0.2 A (110 VDC inductive loa 1 A (100 VAC inductive load

Power Monitoring Equipment Multiple function protectors and controllers F-MPC60G

- Specifications

- Measurement/Display Specifications

(1) Measurement display in steady state

Item		Valid display range	Accuracy *1	Measurement range *2
Current / demand current ${ }^{*^{3}}$ / demand current maximum value		0.8\% to 100\% of CT primary rated current (FS)	$\pm 1.0 \%$	0, or 0.8% to 800% of CT primary rated current
		100\% to 800\% of CT primary rated current (FS)	$\pm 5 \%$	
Zero-phase current / zero-phase current maximum value ${ }^{* 6}$		1.5\% to 100\% of CT primary rated current (FS)	$\pm 1.0 \%$	0, or 1.5% to 800% of CT primary rated current
		100\% to 800% of CT primary rated current (FS)	$\pm 5 \%$	
Voltage	2VT	Line voltage: 5 V to 150 V at VT secondary voltage value(FS)	$\pm 1.0 \%$	Line voltage: 0 , or 5 to 150 V at VT secondary rated voltage
	3VT	Phase voltage: 5 V to 150 V at VT secondary voltage value(FS) Line voltage: 8.7 V to 260 V at VT secondary voltage value(FS)	$\pm 1.0 \%$	Phase voltage: 0 , or 5 to 150 V at VT secondary rated voltage Line voltage: 0 , or 8.7 to 260 V at VT secondary rated voltage
Frequency		45 to 55 Hz when set to 50 Hz (FS)	$\pm 0.5 \%$	45 to 55 Hz when set to 50 Hz
		55 to 65 Hz when set to 60 Hz (FS)		55 to 65 Hz when set to 60 Hz
Power factor		Leading 0.00 to 1.00 to lagging 0.00	$\pm 5 \%$ (Conversion by 90° phase angle)	Leading 0.00 to 1.00 to lagging 0.00 Measurement range and symbols *5
Active power * ${ }^{3}$ Demand active power Demand active power maximum value		0.004 to 1 kW at VT, CT transformer secondary (FS) Phase angle 0 to 60° (lagging) Power factor 1.00 to 0.50 (lagging)	$\pm 1.0 \%$	0 , or 0.004 to 1 kW symbol at VT and CT transformer secondary *5
Reactive power		0.004 to 0.5 kvar at VT, CT transformer secondary Phase angle 0 to 60° (lagging) Power factor 1.00 to 0.50 (lagging)	$\pm 1.0 \%$ of 1 kvar at transformer secondary (FS)	0 , or 0.004 to 1 kvar symbol at VT and CT transformer secondary *5
Active/Reactive electric energy **		Five-digit display from 0 to 99999 The multiplying factor of the measurement display is fixed according to the CT primary rated current and VT primary rated voltage values	Equivalent to Table 4: Standard Measuring Instruments in JIS C 1216 (Measuring Instruments with Transformers)	Five-digit display from 0 to 99999
Harmonic current	Tertiary, quinary	1.5\% to 100\% of CT primary rated current (FS)	$\pm 2.5 \%$	0, or 1.5% to 800% of CT primary rated current
		100\% to 800% of CT primary rated current (FS)	$\pm 5 \%$	
	Septenary, overall	1.5\% to 100\% of CT primary rated current (FS)	$\pm 5 \%$	
		100\% to 800% of CT primary rated current (FS)	$\pm 10 \%$	
	Graph display	Ratio of rated current displayed Tertiary, quinary, septenary display value: \qquad ary current value/rating) x 100 Overall display value: $\sqrt{3 r^{2}+5 t^{2}+7 \text { th }^{2}} /$ rating $\times 100$	-3	The bar graph shows $20 \%, 50 \%, 100 \%, 800 \%$ auto range switching
Harmonic voltage	Tertiary, quinary	5 to 150 V at VT secondary voltage value (FS)	$\pm 2.5 \%$	0 , or 5 to 150 V at VT secondary rated voltage
	Septenary, overall	5 to 150 V at VT secondary voltage value (FS)	$\pm 5 \%$	
	Graph display	$\begin{aligned} & \text { Ratio of rated voltage displayed } \\ & \text { Tertiary, quinary, septenary display value: (} O \text { ary } \\ & \text { voltage value/rating) } \times 100 \\ & \text { Overall display value: } \sqrt{3 r^{2}+5 \mathrm{th}^{2}+7 \mathrm{th}^{2}} / \text { rating } \times 100 \\ & \hline \end{aligned}$	-	The bar graph shows $20 \%, 50 \%$, 150% auto range switching

(2) Measurement display of accident display / accident record

Item	Valid display range	Accuracy	Measurement range ${ }^{* 2}$
Accident (generated phase) maximum current	10% to 2000% of CT primary rated current (FS)	$\pm 5 \%$	10% to 2000% of CT primary rated current
Phase other than accident occurrence phase	2% to 2000% of CT primary rated current (FS)		0, or 2% to 2000% of CT primary rated current
Accident (generated phase) maximum voltage (59)	5 to 150 V at VT secondary rated voltage (FS)	$\pm 5 \%$	0, or 5 to 150 V at VT secondary rated voltage
Accident (generated phase) minimum voltage (27) Phase other than accident occurrence phase			
Accident (generated phase) maximum zero-phase current ${ }^{* 6}$	2% to 800% of CT primary rated current (FS)	$\pm 5 \%$	2% to 800% of CT primary rated current
Phase other than accident occurrence phase	1.5% to 800% of CT primary rated current (FS)		0, or 1.5% to 800% of CT primary rated current

Note: *1 Accuracy does not include errors from the combined transformer
*2 " 0 , a to n " means that " 0 " will be displayed from 0 to less than a
*3 Demand measurement specification

Item	Specifications
Time period	You can select from $0 \mathrm{~min} / 1 \mathrm{~min} / 5 \mathrm{~min} / 10 \mathrm{~min} / 15 \mathrm{~min}$ or 30 min. (1 sec average will be indicated if you set at 0 min.$)$
Item displayed	Demand current, demand active power Maximum demand current value, maximum active power demand value (past maximum value till reset operation)
Measurement/display range	The same as present measurement value which is an instantaneous value

[Demand time]
A thermal bimetal type demand meter is designed to operate and indicate taking a relatively long time.
It will not respond to the instantaneous overload or input variation. Its operation and indication will follow the basic formula below.
[Example: demand current] $\mathrm{I}[\mathrm{dm}]=I[\mathrm{ins}]\left(1-\mathrm{e}^{-3 t / 10}\right) \ldots$ formula (1)
where I [dm]: demand meter display value, I[ins]: certain constant input value of instantaneous current, t0: Average setting time

$\mathrm{t} / \mathrm{t0}$	0	0.5	1	1.5	2.0		
$\mathrm{I}[\mathrm{dm}]$	0	0.777	0.950	0.970	0.9	0.9	0.9999

When a certain input is continuously energized, it calculates with the above exponent function and displays the results. The demand time is the time to be required to reach 95% of the display value of a certain current I[ins]. Therefore, it requires almost three times the setting time for the display value to indicate about 100% input.
The demand time shall be selected based on the target equipment instrument of monitoring or monitoring purpose.

*4 There are two electric energy displays: [1] total electric energy (zero-clear not possible) and [2] periodic electric energy (zero-clear possible).
*5 We use one sign, \pm, to indicate power selling/purchasing in power measurement or LEAD/LAG in power factor measurement. (left blank in case of +) The meaning of \pm is shown below by measurement item.

1] Active power kW

+ : Power purchasing (power consumption)
Power selling (reverse flow power)
2] Reactive power kvar
+ : lagging current by reactive power measurement method
-: leading current by reactive power
measurement method
measurement method
LEAD/LAG will be reversed according to power selling/power purchasing
] Power factor $\mathrm{COS} \varphi$
+: Lagging power factor
: Leading power factor

Io display : Input current displayed as is as measurement value and accident value.
3lo display : Three times the input current displayed as measurement value and accident value.

Power Monitoring Equipment Multiple function protectors and controllers F-MPC60G

- Specifications

- History data

Item	Display range
50 (INST) operation count	0 to 9,999 (times)
51 (DT) operation count	0 to 9,999 (times)
51 (DT2) operation count	0 to 9,999 (times)
51 (OC) operation count	0 to 9,999 (times)
50 G operation count	0 to 9,999 (times)
51 G operation count	0 to 9,999 (times)
59 (OV) operation count	0 to 9,999 (times)
27 (UV) operation count	0 to 9,999 (times)
27 (UV2) operation count	0 to 9,999 (times)

Item	Display range
Open phase operation count	0 to 9,999 (times)
Reverse phase operation count	0 to 9,999 (times)
OCA operation count	0 to 9,999 (times)
OCGA operation count	0 to 9,999 (times)
Operating time	0 to $9,999 \times 100$ (hr)
Switching count	0 to $9,999 \times 10$ (times)
Actual cutoff count	0 to 9,999 (times)

(Other history display) Fault value display: Fault value display on occurrence of a fault, history maximum values of zero-phase voltage/current, maximum demand value (A, W), and minimum instantaneous voltage (Note) 1. Count initial value settings can be changed for the count history data
2. "Operating time" refers to the integrated value of time when the control power of the F-MPC60G Series is normal and input 52a (circuit breaker answer-back signal) of terminal block B-13 is on.
3. The operation count for multi-element protection (such as 50 operating at $\mathrm{R} / \mathrm{S} / \mathrm{T}$) is only counted as 1 even during multi-operation when there is concurrent occurrence (including delays in output continuity).
4. The actual cutoff count is the number of times the trip relay was turned on by the protective relay (including external trip) during circuit breaker inrush (52a in on-state).

- Specifications of protective relays

Item	Current/voltage operate value characteristic adjustment range	Operating time (timer) characteristic adjustment range	Characteristics	
			Operate value	Operating time
50 (instantaneous)	1.0 to 20.0 times the CT rated current (in steps of 0.1 times), Lock	(Fixed)	$\pm 5 \%$	40 ms or less
51DT (fixed time limit)	0.2 to 20.0 times the CT secondary rated current (in steps of 0.1 times), Lock	0.00, 0.05 to 5.00 s (0.01 s steps)	$\pm 5 \%$	Less than $1 \mathrm{~s} \pm 50 \mathrm{~ms}$ 1 s or more $\pm 5 \%$
51DT2 (fixed time limit)	20 to 1000% of CT rated current (in steps of 1\%), Lock	0.00, 0.05 to 10.00 s (0.01 s steps)	$\pm 5 \%$	Less than $1 \mathrm{~s} \pm 50 \mathrm{~ms}$ 1 s or more $\pm 5 \%$
510 C (inverse time limit) IEC: SI, EI, VI, LT, I't IEEE: MI, EI, VI	10 to 240% of CT rated current (in steps of 1%), Lock *OC/OL selection *	Time scale factor: 0.2 to 20.0 times (0.1 steps) (Operating time: $\min 150 \mathrm{~ms}$)	$\pm 5 \%$	setting value of 300% : $\pm 12 \%$ $500: \pm 7 \%, 1000 \%: \pm 5 \%$ (Lower limit $\pm 100 \mathrm{~ms}$)
OCA (Overcurrent pre-alarm)	10 to 100% of CT rated current (in steps of 1\%), Lock	10 to 200 s (10 s steps)	$\pm 10 \%$	$\pm 5 \%$
50 G (instantaneous, short time limit)	0.1 to 8.0 times the CT rated current (in steps of 0.1 times), Lock	0.0 to 180.0 (0.1 s steps) *	$\pm 5 \%$	$\begin{aligned} & \pm 5 \% \\ & \text { (Lower limit } \pm 50 \mathrm{~ms} \text {) } \\ & \hline \end{aligned}$
51 G 3CT residual method or CT tertiary IEC: SI, EI, VI, LT IEEE: MI, EI, VI (inverse time limit selected)	0.02 to 1.00 times the CT rating (in steps of 0.01 times), Lock	$\begin{aligned} & 0.5 \text { to } 50.0 \text { times } \\ & (0.1 \text { steps) } \\ & \text { (Operating time of } \min 150 \mathrm{~ms})^{* 1} \end{aligned}$	$\begin{aligned} & \pm 5 \% \\ & (\text { Lower limit } \pm 100 \mathrm{~mA}) \end{aligned}$	$\begin{aligned} & \text { setting value of } 300 \%: \pm 12 \% \\ & 500: \pm 7 \%, 1000 \%: \pm 5 \% \\ & \text { (Lower limit } \pm 100 \mathrm{~ms} \text {) } \end{aligned}$
(fixed time limit selected)	0.02 to 1.00 times rating (in steps of 0.01 times), Lock	0.01 to 600.00 s (0.05 s steps)	$\begin{aligned} & \pm 5 \% \\ & \text { (Lower limit } \pm 100 \mathrm{~mA}) \end{aligned}$	$\begin{aligned} & \pm 5 \% \\ & (\text { Lower limit } \pm 50 \mathrm{~ms}) \end{aligned}$
OCGA (zero-phase current prealarm)	50 to 100% of 51 Gick-up current setting value (in steps of 1\%), Lock	0.10 to 600.00 s (0.05 s steps)	$\begin{aligned} & \pm 10 \% \\ & (\text { Lower limit } \pm 100 \mathrm{~mA}) \end{aligned}$	$\begin{aligned} & \pm 5 \% \\ & \text { (Lower limit } \pm 50 \mathrm{~ms} \text {) } \\ & \hline \end{aligned}$
59 (OV)	VT secondary: 60 to 150 V (in steps of 1V), Lock	0.0 to 60.0 s (0.1 s steps)	$\pm 5 \%$	$\begin{aligned} & \pm 5 \% \\ & \text { (Lower limit } \pm 50 \mathrm{~ms} \text {) } \end{aligned}$
27 (UV) *2	VT secondary: 10 to 110 V (in steps of 1 V), 52a link on 10 to on 110 V (in steps of 1 V), Lock	0.0 to 60.0 s (0.1 s steps)	$\pm 5 \%$	$\pm 5 \%$ (Lower limit $\pm 50 \mathrm{~ms}$) When 0 s is set: 35 ms or less
27 (UV 2) *2	VT secondary: 10 to 110 V (in steps of 1 V), Lock	0.0 to 60.0 s (in steps of 0.1 s)	$\pm 5 \%$	$\pm 5 \%$ (Lower limit $\pm 50 \mathrm{~ms}$) When 0 s is set: 35 ms or less
Open phase (Current detection)	-	-	Imbalance ratio 50 to 80% or more	2 s (fixed) $\pm 1 \mathrm{~s}$
Reverse phase (Voltage detection)	-	-	-	0.5 s or less

*1 With a function to prevent malfunctions due to exciting current
[1] If the fundamental wave current of zero-phase current is 15% or more of the rated current and the secondary harmonic content ratio is about 15% or more, the device will perform the funcwork
[2] If the fundamental wave current of load current (CT secondary) is higher than the rated current and the secondary harmonic content ratio is about 15% or more, the device will perform the function to prevent malfunction under inrush exciting current to lock the protection 50G and 51G operation. In the case of protection 50G with the operating time being 0 s, however, this function will not work. The secondary harmonics suppression will be locked when the zero-phase current or one of load currents ($A / B / C$) reaches the predetermined value.
[3] The second harmonic suppression function in [1] and [2] above can be set as enabled/disabled (Loc)
*2 Voltage determination is selectable from AND, three-phase OR, and 2 OUT OF 3 ($2 / 3$ determination).
*3 For characteristics formula, refer to 5. "Protection Characteristics."
$* 4$ When OL is selected, 510 C performs an AND operation with 51DT. (Even if 51DT satisfies trip conditions, 51DT will not operate until 510 C operates.) For details, refer to Appended Figure 5 .

Specifications

- Communications specifications

item		Specifications	
		F-MPC-Net protocol	Modbus RTU protocol
Standard		EIA RS-485	
Data exchange		1:N (this device) polling/selecting	
Maximum transmission distance		1,000 m	
Number of connection stations		Maximum 64 units ${ }^{\text {Note2 }} /$ one system (however, the master device is included in the 64 units)	
Address setting		01 to 99	
Transmission speed		4800/9600/19200/38400 bps	
Data format	Start bit	1 bit (fixed)	1 bit (fixed)
	Data length	7/8 bits (select)	8 bit (fixed)
	Parity bit	None/Even number/Odd number (select)	None/Even number/Odd number (select)
	Stop bit	1 bit (fixed)	$1 / 2$ bit (auto) ${ }^{\text {Note1 }}$

Note 1: When the Modbus RTU protocol is selected, the character configuration is fixed at 11 bits. The stop bit length is automatically recognized based on whether or not parity is selected.
Note 2: When 32 units are connected, two units are recognized as one unit and the maximum number of connection will be lower.

- Specifications of transducer outputs

Item		Specifications	Acceptable error
Transducer output signal		4 to 20 mA (acceptable load 270Ω or less)	
Signal type	Current (la, Ib, Ic)	4 to 20 mA versus 0 to CT rating	$\pm 1.5 \%$
	Line voltage (Vuw, Vvw, Vwu)	(1) 4 to 20 mA versus VT secondary 0 to 150 V (2) 4 to 20 mA versus VT secondary 0 to $150 \times \sqrt{ } 3 \mathrm{~V}$	
	Phase voltage (Vun, Vvn, Vwn)	(1) 4 to 20 mA versus VT secondary 0 to $150 \times \sqrt{ } 3 \mathrm{~V}$ (2) 4 to 20 mA versus VT secondary 0 to 150 V	
	Active power (W)	4 to 20 mA versus 0 to 1 kW (CT5A conversion)	
	Reactive power (var)	4 to 12 to 20 mA versus -1 kvar to 0 to 1 kvar (CT5A conversion)	
	Frequency (Hz)	4 to 20 mA versus 45 to 55 Hz or 55 to 65 Hz	
	Power factor (PF)	4 to 12 to 20 mA versus LEAD 0.5 to 1 to LAG 0.5	$\pm 5 \%$
	Current expansion (la, lb, Ic)	4 to 16 mA versus 0 to CT rating 16 to 20 mA versus CT rating to CT rating $\times 5$ times	$\pm 1.5 \%$
			$\pm 5 \%$
	Single-phase active power	4 to 20 mA versus 0 to 0.5 kW (CT5A conversion)	$\pm 1.5 \%$
	Single-phase reactive power	4 to 12 to 20 mA versus -0.5 kvar to 0 to 0.5 kvar (CT5A conversion)	
	Zero-phase current (l)	3CT residual: 4 to 20 mA versus 0 to CT rating	$\pm 1.5 \%$
Output response time		2 sec. or less (when rated input is applied, the time will be within $90 \% \pm 1 \%$ of the final steady value)	

- Negative side of the output signal is common.

The limiter is applied when the upper/lower limit value is exceeded. The lower limit value and upper limit value are fixed at 4 mA and 20 mA .

- Acceptable error is an error for FS. Example: If CT primary rated current is 400 A , the error is $\pm 6.0 \mathrm{~A}$ or less. Whether input current is 40 A or 400 A , the error is 6.0 A or less. Please note that this device does not offer zero- or spanadjustment function. Make an adjustment externally as necessary.

Note1 (1): At line voltage 100/110/120V, (2): At line voltage (100/110/120V) $\times \sqrt{3}$

* The default setting is described in the table below.

Transducer output channel	Setting when shipped
CH 1	No output
CH 2	No output
CH 3	No output
CH 4	No output
CH 5	No output
CH 6	No output

- Specifications of kWh pulse output

Item	Specifications
Output	Open collector output
Output capacity	Maximum $150 \mathrm{VDC}, 100 \mathrm{~mA}$
Pulse width	$200 \pm 20 \mathrm{~ms}$
Output pulse unit	$10^{\mathrm{n}} \mathrm{kWh} / \mathrm{pulse}(\mathrm{n}=-2$ to 4 in setting $)$
	2,000 pulse/kWh $(\mathrm{n}=\mathrm{F}$ in setting $)$

■ Specifications

- Accident waveform recording data specification

- Clock specifications

Item	Specifications	Remarks
Clock accuracy	Within ± 20 minutes/year	Average ambient temperature: $\mathrm{At} \pm 25^{\circ} \mathrm{C}$
Power outage guarantee	7 days If a power outage exceeds the backup period, it will start up again at 2000-01-01 0:00.	Average ambient temperature: $\mathrm{At} \pm 25^{\circ} \mathrm{C}$ Control power must flow for at least 10 minutes to charge the backup electrical double-layer capacitor.

■ Indications \& Settings

- Wiring diagram example

- Power receiving unit external wiring example (UM63FN-E $\square \mathrm{AK}$)

■ External dimensions [unit: mm]

— OC, 51G relay characteristics

Features

- Compact and lightweight

Compact unit that integrates protection, operation, measurement, monitoring, transducer output and transmission functions.

- High-voltage power receiving (ZVT and EVT compatible) Compatible with high-voltage power receiving ZVT and EVT.
- Flexibly responds to circuit changes

Makes it easy to change settings such as CT ratios through its intuitive operation.
CT primary current: 5 A to 7500 A
VT primary voltage: 210 V to 110 kV

- Network system

Makes it easy to build information network systems that connect with upper-level computers via RS-485 (F-MPC-Net, Modbus RTU), T-Link or 4-20 mA output.

- Prevention of erroneous cutoff

Erroneous cutoff is prevented, even in the event of part failure, via a duplicated CPU and analog circuit and AND output processing.

- Self-monitoring function

It constantly monitors the internal operating state so that it can respond quickly in the event of failure.

- Improved maintainability

Facilitates preventive maintenance through circuit breaker monitoring and supports accident analysis through accident measurement.

- Simplifies overcurrent relay and protective coordination

■ Type number nomenclature

	UM43 F	G-E 5 A K	
Basic type UM43: F-MPC60B series (3ø3W/3ø4W use) External interface A: "4-20mA output" and "RS-485 interface"			
Type of unitF: Receiving unit			
Ground fault protectionG: $50 \mathrm{G} / 51 \mathrm{G}$ (resister grounding)E: 100 V AC/DC common use			

Specifications

Type		UM43FG-E5AK
Control power supply		100 V DC (80 to 143V)/ 100V AC (85 to 132V) common use
Control power consumption		Max. 15W
Power consumption of CT, VT		Max. 1.0VA
Rated current (CT secondary current)		5A AC ("1A AC" model is also available (non-standard).)
Rated voltage	Line voltage	Select "110V AC" or " $110 \times \sqrt{3}$ AC" (VT secondary voltage)
	Phase voltage	Select "110V $/ \sqrt{3}$ AC" or "110V AC" (VT secondary voltage)
Zero-phase current		5A AC
Insulation resistance		$10 \mathrm{M} \Omega$ (min.) between ground and electric circuits connected together
Vibration resistance		$16.7 \mathrm{~Hz} 1.96 \mathrm{~m} / \mathrm{s}^{2}, 0.4 \mathrm{~mm}$ double amplitude, 10 minutes each in X, Y, and Z directions
Shock resistance		$300 \mathrm{~m} / \mathrm{s}^{2}$, three times each in X, Y, and Z directions
Withstand voltage		2 kV AC 1 minute between ground and electric circuits connected together, excluding, RS-485 signal, MN signal, and kWh-pulse output signal cables
Noise resistance		JEC2500 (conforming to ANSI), square wave, 1.5 kV , 1ns/1 $\mu \mathrm{s}$, for 10 minutes.
Overload resistance		CT circuit: at ratting 40times, a second, 2 times VT circuit: at ratting 1.25 times, 10 second
Lightning impulse noise resistance		5.0 kV (between ground and electrical circuits connected together)
Dropout tolerance		20ms (Operation continues, however, display goes out.)
Electrostatic discharge		Contact discharge: $\pm 8 \mathrm{kV}$ Aerial discharge: $\pm 15 \mathrm{kV}$
Ambient temperature		Operating: -10 to $+60^{\circ} \mathrm{C}$ (operation guaranteed) 0 to $+40^{\circ} \mathrm{C}$ (characteristics guaranteed) (no icing) *1 Storage: - 25 to $+70^{\circ} \mathrm{C}$ (no icing)
Humidity		20 to 90\% RH (no condensation)
Atmosphere		No corrosive gas and no heavy dirt and dust.
Grounding		Class D grounding (100 or less)
Applicable standard		JEC2500 (Protective relays for electric power systems), JEC-2510 (Overcurrent relays), JEC-2511 (Voltage relays), JIS C4602 (Overcurrent relays for 6.6kV receiving), JIS C1102-1 to -9 (Direct acting analogue electrical instrument and their accessories), IEC255-3 (1989), -5, -6
Mass		1.4 kg

[^1]\square Specifications

- Input/output specifications

Input circuit		Applicable to both 100 V DC (max. 143 V) and 100 V AC (max. 132V) Pick up voltage: 40 to 70 V DC/40 to 70 V AC
Output circuit	Circuit breaker ON/OFF/trip	Making current: $15 \mathrm{~A}(110 \mathrm{~V}$ DC), allowable continuous current: 4 A
	Other than above	Making/breaking current: $0.2 \mathrm{~A}(110 \mathrm{~V}$ DC, inductive load L/R $=15 \mathrm{~ms}$ or less), allowable continuous current: 1 A

- Measurement and display specifications

	Effective measuring and display range	Accuracy *2
Current/Demand current/ Max. demand current	$0,0.8 \%$ to CT rating to $8 \times$ CT rating ${ }^{* 1}$	$\pm 1.5 \%(0,0.8$ to $100 \%), \pm 5 \%(100$ to $800 \%)$
Zero-phase current/Max. zero-phase current	CT: 0, 2% to CT rating to $8 \times$ CT rating	$\pm 1.5 \%: 0,2 \%$ to CT rating, $\pm 5 \%$: others
Active power Demmand active power/ Reactive power	± 0.004 to $\pm 1 \mathrm{~kW}$ at VT secondary circuit (The value is converted into the VT rated voltage	$\pm 1.5 \%: 0, \pm 0.004$ to $\pm 1 \mathrm{~kW}$ See the figure below.
Power factor	Lead $0 \%-100 \%-$ Lag 0%	$\pm 5 \%$ (Lagging: no sign, leading: - sign) See the figure below.
Active electric energy ${ }^{* 3}$ Reactive electric energy	0 to 99999, multiplying factor: $1,10,100,1000$	Equivalent to ordinary instruments shown in Table 4 specified in JIS C 1216 (instrument with a transformer)
Line voltage	9.5 to 260 V on VT secondary side	$\pm 1.5 \%$
Phase voltage	5.5 to 150 V on VT secondary side	$\pm 1.5 \%$
Frequency	45 to 55 Hz (50Hz), 55 to $65 \mathrm{~Hz}(60 \mathrm{~Hz})$	$\pm 0.5 \%$
Max. demand value	Same as the above range	-
Harmonics current	3 3rd, 5 th, 7 th, overall harmonics	-

*1 The fault current up to 2000% (accuracy: $\pm 5 \%$) can be displayed.
*2 " 0 , a to $n \%$ " means that " 0 " is indicated if a value is less than $a \%$.
${ }^{* 3}$ There are two indications in the electric energy indication; total electric energy indication (zero clear disable) and periodic electric energy indication (zero clear is enable).

The sign " \pm " in electric measuring

The sign " \pm " is used to display "LEAD/LAG" in power-factor. measuring and "electric power selling/purchase" in electric power measuring. No signs are used if a value is " + ". The sign " \pm " has the following meanings depending on the measured items.

- Specifications
- History data

Item	Display range	Display code
50 (INST) operation count	0 to 9999	H 0
51 DT 1 operation count	0 to 9999	H 1
51 (OC) operation count	0 to 9999	H 2
51 G operation count	0 to 9999	H 3
50 G operation count	0 to 9999	H 4
59 (OV) operation count	0 to 9999	H 6
27 (UV) operation count	0 to 9999	H 7

* Other history display: Fault value display (on occurrence of a fault), history maximum values of zero-phase current/voltage, maximum demand value (A, W) and minimum instantaneous voltage

Item	Display range	Display code
46 operation count	0 to 9999	H 9
47 operation count	0 to 9999	HA
OCA operation count	0 to 9999	Hb
Running time	0 to $9999 \times 100(\mathrm{~h})$	Hc
ON/OFF operation	0 to $9999 \times 10($ times $)$	Hd
OCGA operation count	0 to 9999	Hn
51DT2 operation count	0 to 9999	HP

* The display codes are the codes to be displayed on this F-MPC60B (UM43FGE5AK).
- Specifications of protective relays

Item	Setting range of current/ voltage operate value	Setting range of operate time (timer)	Characteristics	
			Operate value	Operate time
50 (Instantaneous)	1 to 20 times of CT rated current (in 0.2 times step), Lock	Fixed	$\pm 5 \%$	40 ms or less
51DT1 (Definite time)	1 to 20 times of CT rated current (in 0.2 times step), Lock	0 to 5s (in 0.05 step)	$\pm 5 \%$	Less than $1 \mathrm{~s} \pm 50 \mathrm{~ms}$ More than $1 \mathrm{~s} \pm 5 \%$
51DT2 (Definte time)	20 to 240% of CT rated current (2\% step), Lock	0 to 10s (0.1s step)	$\pm 5 \%$	Less than $1 \mathrm{~s} \pm 50 \mathrm{~ms}$ More than 1s $\pm 5 \%$
51 (Inverse time) $\mathrm{SI}, \mathrm{EI}, \mathrm{VI}, \mathrm{LT}, \mathrm{I}^{2} \mathrm{t}$	20 to 240% of CT rated current (2\% step), Lock	Time multiplication: 0.5 to 20 times, (in 0.1 times step) (Minimum operation time: 150 ms)	$\pm 5 \%$	$\begin{aligned} & \text { Setting }=300 \%: \pm 12 \% \\ & 500,1000 \%: \pm 7 \% \\ & \text { (lower limit } \pm 100 \mathrm{~ms} \text {) } \end{aligned}$
$\begin{aligned} & \text { 50G, 50N } \\ & \text { (Instantaneous/definite time) } \end{aligned}$	0.2 to 8 times of CT rated current (in 0.1 times step), Lock	0.0 to 10s to 180s **	$\pm 5 \%$	$\pm 5 \%$ (lower limit $\pm 50 \mathrm{~ms}$)
$\begin{aligned} & 51 \mathrm{G}, 51 \mathrm{~N} \\ & \mathrm{SI}, \mathrm{EI}, \mathrm{VI}, \mathrm{LT} \end{aligned}$	0.02 to 1.00 times of CT rated current (in 0.01 times step), Lock	Time multiplication: 0.5 to 20 times (in 0.1 times step) (Minimum operation time: $150 \mathrm{~ms})^{* 1}$	$\begin{aligned} & \pm 5 \% \\ & (\mathrm{~min} . \pm 100 \mathrm{~mA}) \end{aligned}$	$\begin{aligned} & \text { Setting }=300 \%: \pm 12 \% \\ & 500,1000 \%: \pm 7 \% \\ & \text { (lower limit } \pm 100 \mathrm{~ms} \text {) } \end{aligned}$
59 V (0V)	VT secondary voltage: 60 to 150 V (1V step), lock	0.0 to 5.0 s to 60 s (in 0.5 s step) (in 1s step)	$\pm 5 \%$	$\pm 5 \%$ (min. $\pm 50 \mathrm{~ms}$)
27V (UV)	VT secondary voltage: 10 to 100 V (1V step), lock	0.0 to 5.0 s to 60s (in 0.5s step) (in 1s step)	$\pm 5 \%$	$\pm 5 \%$ (min. $\pm 35 \mathrm{~ms}$)
46 (Open-phase)	-	-	Unbalanced rate 50-80\%	2s (fined)
47 (Phase sequence relay)	-	-	-	0.5 s on less
OCA (Overcurrent prealarm)	10 to 100% of CT rated current (in 5\% step), Lock	10 to 200s (in 10s step)	$\pm 10 \%$	$\pm 5 \%$
OCGA (Leakage current pre-alarm)	50, 60, $70,80 \%$ of the setting value of "51G operating current", Lock	10 to 200s (in 10s step)	$\begin{aligned} & \pm 10 \% \\ & (\min \pm 200 \mathrm{~mA}) \end{aligned}$	$\pm 5 \%$

*1 When a current exceeds 15% of the rated fundamental wave current, the malfunction preventive function against the exciting inrush current activates. (When the contents of the second higher harmonics are about 15% or higher, the feature will lock outputs.) Note that with the 50 G relay, the malfunction preventive function against the exciting inrush current will not activate if you set the operate time at 0 s .

Specifications

- Communications specifications

Protocol	MODBUS protocol mode	MPC-Net mode
Standard	EIA-485	EIA-485
Data exchange method	polling/selecting system	1: N polling/selecting system
Transmission distance	1000m (total length)	1000m (total length)
No. of connectable units	Up to 32 units (including master unit)	Up to 32 units (including master unit)
Station number address	01 to 99	01 to 99
Transmission speed	4800/9600/19200 bps (selectable)	4800/9600/19200 bps (selectable)
Data format	Number of start bits: 1 (fixed) Data length: 8 bits (fixed) Parity bit: None/even/odd (selectable) Stop bits: 1 bit or 2 bit (automatic selection) 1 bit: for "even or odd" parity 2 bit: for "none" parity	Number of start bits: 1 (fixed) Data length: $7 / 8$ bits (selectable) Parity bit: None/even/odd (selectable) Stop bits: 1 (fixed) BCC $=$ Even horizontal parity

- Specifications of transducer outputs

Transducer output signal	4 to 20 mA DC (external load resistance: 270Ω or less)		
Signal type	Current (la, Ib, Ic)	4 to 20 mA for 0 to CT rated current	Accuracy $\pm 1.5 \%$
	Line voltage (Vab, Vbc, Vca)	For VT secondary 0 to150V, 4 to $20 \mathrm{~mA} * 1$	

Note: • Output signals are connected to a common terminal (minus side).

- An upper or lower limiter operates when the output signal is about to exceed the upper or lower limit.

The upper limit is fixed at 20 mA , and the lower limit is fixed at 20 mA .
*1: Applied line voltage: $100 \mathrm{~V} / 110 \mathrm{~V} / 120 \mathrm{~V}$ AC.
*2: Applied line voltage: $100 \mathrm{~V} / 110 \mathrm{~V} / 120 \mathrm{~V}$ AC $\times \sqrt{3}$, AC .

- Specifications of kWh pulse output

Type of output	Transistor, open collector
Ratings	Max. 150 V DC, 100 mA
Pulse width	$200 \pm 20 \mathrm{~ms}$
Pulse rate	$10^{n} \mathrm{kWh}$ per pulse ($\mathrm{n}=-2$ to 4) (integer), or 2000 pulses per kWh

■ Indications \& Settings

■ Example of etxternal wiring diagrams

Note: *1 Use selective input 1 to 8 and selective output 1 to 8 by selecting the function type by setup.
${ }^{* 2}$ Outputs of "ON, OFF, TRIP and equipment error" are used exclusively. Inputs of "52a: the answer back signal of CB ON" and "the monitoring of TC coil" are used exclusively.
${ }^{* 3}$ Equipment error output is a normally closed contact (normally excited, and if an error occurs, excitation terminates and contact opens). Therefore, a time delay of about 100 ms occurs before the contact opens, since the power has been on (in operation). Consider the use of a timer, if necessary, if you create an external sequence.
${ }^{* 4}$ If this unit, being provided with RS-485 communication function, is located at the termination of a communication line, connect terminals No. 3 and 5 . With this, the 100Ω terminating resistor is connected across the RS-485 bus.
${ }^{* 5}$ Use twisted wires (cables) as the output cable of transducer.

- If you have to connect a heavy load exceeding relay's contact rating, be sure to use it in combination with FUJI's miniature power relay $\mathrm{HH} 6 \square$. See page D1-213 "Input/output specifications."

Time-current characteristic

Standard inverse (SI) characteristics

Note:
Time setting (lever) is of 0.1 times step (Lower limit: 0.5 , upper limit: 20.0). Indication of a part of the lever is omitted in the characteristics indicated above.

$$
\mathrm{t}=\frac{0.14}{\mathrm{p}^{020}-1} \times \frac{\mathrm{L}}{10}(\mathrm{~L}: \text { time magnification })
$$

Note:
Time setting (lever) is of 0.1 times step (Lower limit: 0.5 , upper limit: 20.0). Indication of a part of the lever is omitted in the characteristics indicated above.

$$
t=\frac{80}{l^{2}-1} \times \frac{L}{10}(L: \text { time magnification })
$$

Very inverse (VI) characteristics

Note:
Time setting (lever) is of 0.1 times step (Lower limit: 0.5 , upper limit: 20.0). Indication of a part of the lever is omitted in the characteristics indicated above.
$t=\frac{13.5}{I-1} \times \frac{L}{10}(L:$ time magnification)

Very inverse (LT) characteristics

Note:
Time setting (lever) is of 0.1 times step (Lower limit: 0.5 , upper limit: 20.0). Indication of a part of the lever is omitted in the characteristics indicated above.

$$
t=\frac{120}{I-1} \times \frac{L}{10}(L: \text { time magnification })
$$

| 2 t characteristics

Note:
Note:
Time setting (lever) is of 0.1 times step (Lower limit: 0.5 , upper limit: 20.0). Indication of a part of the lever is omitted in the characteristics indicated above.

$$
\mathrm{t}=\frac{720}{\mathrm{~L}^{2}} \times \frac{\mathrm{L}}{10}(\mathrm{~L}: \text { time magnification })
$$

Dimensions, mm

Minimum clearance from adjacent upper and lower devices or panel plate: 100 mm

Characteristics of overcurrent relay (OCR)
The characteristics of overcurrent relays (OCR) are, in general, divided into the protective INST (50) (setting code 10, 11), the protective DT1 (setting code 12 to 14), protective DT2 (setting code 1c, 1d, 1E) and the protective OC 51 (setting code 15 to18). The characteristics of protective OC 51 consist
of 5 kinds of inverse characteristic curves, such as standard inverse (SI) characteristics, very inverse (VI) characteristics, long time inverse (LT) characteristics, extremely inverse (EI) characteristics and $\mathrm{I}^{2} \mathrm{t}$ characteristics). Combination of the protective INST (50), protective DT1, protective DT2 and OC 51 carries out coordinative protection.

Outline of characteristic of overcurrent relay

Item	Operating current	Operating time
Protective INST (50)	1 to 20 times of CT rated current 5A (0.2 times step)	Fixed (40ms or less)
		0 to 5 s (0.05s step)
Protective DT1	20 to 240% of CT rated current 5 A	0 to 10 s (0.1s step)
Protective DT2	(2\% step) *1	Select from 5 characteristic curves. Time magnification: 0.5 to 20 times (0.1 times step)
Protective OC (51)		

*1: The operating time of protective OC51 is saturated at about 150 ms .
The operating time will be saturated at 20 times of CT rated current when the setting exceeds 200%.
For example, the operating time becomes 833% ($=2000 \% /(240 \% \times 100)$) of the CT rated current in 240% setting.

Multiple function protectors and controllers F-MPC30 series, UM5ACG-H5R

■ Description

The F-MPC30 series is a multiple function protectors and controllers in the power monitoring equipment, which integrates protective, measurement, and transfer functions for power feeder facilities. Versatile functions such as preventive maintenance and history data and abnormal value recording can be achieved with excellent economy and reliability. These works have been very complicated as you must have used individual power monitoring devices in combination.

Features

Economical system configuration

Includes measurement and protective functions limited to the current ranges most frequently used, thus allowing the construction of economical systems.

Improved operating reliability

Includes an automatic monitor function, an automatic diagnostic function supported by continuous monitoring and automatic inspection, and a fail-safe function, thus ensuring high operating reliability while minimizing daily and regular inspection tasks.

UM5ACG-H5R

Easily designed coordination protection
Provided with 51DT1 and 51DT2 definite time trip characteristics that simplify the designing of coordination protection between overcurrent relays.

RS-485 communications interface
Two protocol types are available:
MPC-Net protocol and MODBUS protocol.

- Specifications

- General specifications

Type	UM5ACG-H5R
Control power supply	100/200V DC (80 to 286V DC) 100V AC (85 to 132V) common use
Control power consumption	Max. 15W (100/200V DC), Max 25 VA (100V AC)
Power consumption of CT, VT	Max. 1.0VA
Rated current (CT secondary current)	5A AC ("1A model" is also available (non-standard))
Zero-phase current	5A AC
Insulation resistance	$10 \mathrm{M} \Omega \mathrm{min}$. between ground and electric circuits connected together
Vibration resistance	$16.7 \mathrm{~Hz}, 0.4 \mathrm{~mm}$ double amplitude, $1.96 \mathrm{~m} / \mathrm{s}^{2}, 10$ minutes each in X, Y, and Z directions
Shock resistance	$300 \mathrm{~m} / \mathrm{s}^{2}$, three times each in X, Y, and Z directions
Withstand voltage	2 kV AC 1 minute between ground and electric circuits connected together, excluding RS-485 signal lines
Noise resistance	JEC 2500 (conforming to ANSI), square wave, 1.5 kV , $1 \mathrm{~ns} / 1 \mu \mathrm{~s}$, for 10 minutes
Overload resistance	CT circuit: at rating 40 times, a second, 2 times
Lightning impulse noise resistance	4.5 kV (between ground and electrical circuits connected together)
Dropout tolerance	20ms (Operation continues, however, display goes out.)
Electrostatic discharge	Contact discharge: $\pm 8 \mathrm{kV}$, Aerial discharge: $\pm 15 \mathrm{kV}$
Ambient temperature	-10 to $+60^{\circ} \mathrm{C}$ (operation guaranteed), 0 to $+40^{\circ} \mathrm{C}$ (characteristic guaranteed) (no icing) *1
Storage temperature	-25 to $+70^{\circ} \mathrm{C}$ (no icing)
Humidity	20 to 90\%RH (no condensation)
Atmosphere	No corrosive gas and no heavy dirt and dust.
Grounding	Class D grounding (100 or less)
Applicable standard	JEC2500 (Protective relays for electric power systems), JEC-2510 (Overcurrent relays), JIS C4602 (Overcurrent relays for 6.6kV receiving), JIS C1102-1 to -9 (Direct acting analogue electrical instrument and their accessories), IEC255-3 (1989) -5, -6.
Mass	1.4 kg

*1: The operation guaranteed temperature is a temperature at which operation is guaranteed within two times of the guaranteed accuracy value at JEC characteristics guaranteed temperature, or within the accuracy of influence of JIS temperature.

- Input/output specifications

Input circuit		$100 / 200 \mathrm{~V}$ DC (286V DC or less) common use Pick-up voltage: 40 to 70 V DC (Input current; 1.2 mA at 100 V DC, 2.4 mA at 200 V DC)
Output circuit	Circuit trip	The closing current: $15 \mathrm{~A}(110 \mathrm{~V}$ DC), $10 \mathrm{~A}(220 \mathrm{~V}$ DC), the allowable continuous conduction current: 4 A
	Other than above	The switching current: $0.2 \mathrm{~A}(110 \mathrm{~V}$ DC, inductive load L/R $=15 \mathrm{~ms}$ or less) The allowable continuous conduction current: 1 A
	The making current: $0.1 \mathrm{~A}(220 \mathrm{~V}$ DC, inductive load L/R $=15 \mathrm{~ms}$ or less) The allowable continuous conduction current: 1 A	

- Measurement and display specifications

	Effective measuring and display range	Accuracy *2
Current	$0,0.8 \%$ to CT rating to $8 \times$ CT rating *1	$\pm 1.5 \%(0,0.8$ to $100 \%), \pm 5 \%(100$ to $800 \%)$
Zero-phase current	CT: $0,2 \%$ to CT rating to $8 \times$ CT rating	$\pm 1.5 \%(0,2 \%$ to CT rating), $\pm 5 \%$ (more than CT rating)

*1 The fault current up to 2000% (accuracy: $\pm 5 \%$) can be displayed.
*2 " 0 , a to $n \%$ " means that " 0 " is indicated if a value is less than $a \%$.

- History data and display ranges

Item	Display range	Display code
50 (INST) operation count	0 to 9999	H 0
51DT1 operation count	0 to 9999	H 1
51 (OC) operation count	0 to 9999	H 2
51G operation count	0 to 9999	H 3
50G operation count	0 to 9999	H 4

* Other history display: Fault value display (on occurrence of a fault), history maximum values of zero-phase current/voltage, maximum demand value (A, W), and minimum instantaneous voltage

Item	Display range	Display code
OCA operation count	0 to 9999	Hb
Running time	0 to $9999 \times 100(\mathrm{~h})$	Hc
Close operation count	0 to 9999×10 (times)	Hd
OCGA operation count	0 to 9999	Hn
51DT2 operation count	0 to 9999	HP

*The display codes are the codes to be displayed on this F-MPC30 (UM5ACGH5R).

	Setting range of current/voltage operatel value	Setting range of operate time (timer)	Characteristics (accuracy)	
			Operate value	Operate time
50 (Instantaneous)	1 to 20 times of CT rated current (in 0.2 times step), Lock	Fixed	$\pm 5 \%$	40 ms or less
51DT1 (Definite-time)	1 to 20 times of CT rated current (in 0.2 times step), Lock	0 to 5s (in 0.05s step)	$\pm 5 \%$	Less than $1 \mathrm{~s} \pm 50 \mathrm{~ms}$ More than $1 \mathrm{~s} \pm 5 \%$
51DT2 (Definite-time)	20 to 240% of CT rated current (in 2% step), Lock	0 to 10s (in 0.1s step)	$\pm 5 \%$	Less than $1 \mathrm{~s} \pm 50 \mathrm{~ms}$ More than $1 \mathrm{~s} \pm 5 \%$
51 (Inverse time) SI, EI, VI, LT	20 to 240% of CT rated current (in 2% step), Lock	Time multiplication: 0.5 to 20 times (in 0.1 times step) (Min. operation time: 150ms)	$\pm 5 \%$	$\begin{array}{\|l} \hline \text { Setting value } 300 \%: \pm 12 \% \\ 500,1000 \%: \pm 7 \% \\ \text { (lower limit } \pm 100 \mathrm{~ms} \text {) } \\ \hline \end{array}$
50G, 50N (Instant/definite time)	0.1 to 8 times of CT rated current (in 0.1 times step), Lock	$\begin{array}{\|l} 0.0 \text { to } 10 \mathrm{~s} \text { to } 180 \mathrm{~s} \\ \text { (in } 0.1 \mathrm{~s} \text { step.) (in } 1 \mathrm{~s} \text { step.) }{ }^{112} \end{array}$	$\pm 5 \%$	$\pm 5 \%$ (lower limit $\pm 50 \mathrm{~ms}$)
$\begin{aligned} & \text { 51G, 51N } \\ & \text { SI, EI, VI, LT } \end{aligned}$	0.02 to 1.00 times of CT rated current (in 0.01 times step), Lock	Time multiplication: 0.5 to 20 times (in 0.1 times step) (Min. operation time: 150ms)	$\pm 5 \%$	$\begin{aligned} & \text { Setting value } 300 \%: \pm 12 \% \\ & 500,1000 \%: \pm 7 \% \\ & \text { (lower limit } \pm 100 \mathrm{~ms} \text {) } \end{aligned}$
OCA (Overcurrent pre-alarm)	10 to 100% of CT rated current (in 5\% step), Lock	10 to 200s (in 10s step)	$\begin{aligned} & \pm 10 \% \\ & (\mathrm{~min} . \pm 100 \mathrm{~mA}) \end{aligned}$	$\pm 5 \%$
OCGA (Leakage current pre-alarm)	$50,60,70,80 \%$ of the setting value of "51G operating current", Lock	10 to 200s (in 10s step)	$\begin{aligned} & \pm 10 \% \\ & (\min . \pm 200 \mathrm{~mA}) \end{aligned}$	$\pm 5 \%$

Notes: ${ }^{* 1}$ When a current exceeds 15% of the rated fundamental wave current, the malfunction preventive function against the exciting inrush current activates. (When the contents of the second higher harmonics are about 15% or higher, the feature will lock outputs.) Note that with the 50 G relay, the malfunction preventive function against the exciting inrush current will not activate if you set the operate time at 0 s

- Communications specifications

Protocol	MODBUS protocol mode	MPC-Net mode
Standard	EIA-485	EIA-485
Data exchange method	Polling/selecting system	1: N polling/selecting system
Transmission distance	1000m (total length)	1000m (total length)
No. of connectable units	Up to 32 units (including master unit)	Up to 32 units (including master unit)
Station number address	01 to 99	01 to 99
Transmission speed	4800/9600/19200 bps (selectable)	4800/9600/19200 bps (selectable)
Data format	Number of start bits: 1 (fixed) Data length: 8 bits (fixed) Parity bit: None/even/odd (selectable) Stop bits: 1 bit or 2 bit (automatic selection) 1 bit: for "even or odd" parity 2 bit: for "none" parity	Number of start bits: 1 (fixed) Data length: $7 / 8$ bits (selectable) Parity bit: None/even/odd (selectable) Stop bits: 1 (fixed) BCC: Even horizontal parity

Example of external wiring diagram (External 3 CTs)
3-phase, 4-wire system / zero-phase current

3-phase, 4-wire system / N-phase

dedicated CT connection

Note: - Use selective input 1 and selective output 1 to 3 by selecting the function type by setup. See page D1-220 for details.

- Outputs of "TRIP and device error" are used exclusively. Inputs of "52a: the answer back signal of CB ON" and "the monitoring of TC coil" are used exclusively.
- Device error output is a normally closed contact (normally excited, and if an error occurs, excitation terminates and contact opens). Therefore, a time delay of about 100 ms occurs before the contact opens, since the power has been on (in operation). Consider the use of a timer, if necessary, if you create an external sequence.
- If you have to connect a heavy load exceeding relay's contact rating, be sure to use it in combination with FUJI's miniature power relay HH6 \square. See page D1-220 "Input/output specifications."
- If this unit, being provided with RS-485 communication function, is located at the termination of a communication line, connect terminals No. 3 and 5 . With this, the 100Ω terminating resistor is connected across the RS- 485 bus.

Time-current characteristics of an overcurrent relay
Stnadard inverse (SI) characteristics

Note:
Time setting (lever) is of 0.1 times step (Lower limit: 0.5 , upper limit: 20.0). Indication of a part of the lever is omitted in the characteristics indicated above.

$$
\mathrm{t}=\frac{0.14}{1^{0.02}-1} \times \frac{\mathrm{L}}{10} \quad(\mathrm{~L}: \text { Time magnification })
$$

Long time inverse (LT) characteristics

Note:

Time setting (lever) is of 0.1 times step (Lower limit: 0.5 , upper limit: 20.0). Indication of a part of the lever is omitted in the characteristics indicated above.

$$
t=\frac{120}{I-1} \times \frac{L}{10}(L: \text { Time maginification })
$$

Very inverse (VI) characteristics

Note:
Time setting (lever) is of 0.1 times step (Lower limit: 0.5, upper limit: 20.0). Indication of a part of the lever is omitted in the characteristics indicated above.

$$
t=\frac{13.5}{1-1} \times \frac{L}{10}(\text { L: Time magnification })
$$

Extremely inverse (EI) characteristics

Note:
Time setting (lever) is of 0.1 times step (Lower limit: 0.5 , upper limit:
20.0). Indication of a part of the lever is omitted in the characteristics indicated above.

$$
t=\frac{80}{I^{2}-1} \times \frac{L}{10}(L: \text { Time maginification })
$$

Dimensions, mm

- Characteristics of overcurrent relay (OCR)

The characteristics of overcurrent relays (OCR) are, in general divided into the protective INST (50) (setting code 10, 11), the protective DT1 (setting code 12 to 14), protective DT2 (setting code 1c, 1d, 1E) and the protective OC 51 (setting code 15 to18). The characteristics of protective OC 51 consist of 4 kinds of inverse characteristic curves, such as standard
inverse (SI) characteristics, very inverse (VI) characteristics, long time inverse (LT) characteristics, extremely inverse (EI) characteristics. Combination of the protective INST (50), protective DT1, protective DT2 and OC 51 carries out coordinative protection.

Outline of characteristic of overcurrent relay.

Item	Operating current	Operating time
Protective INST (50)	1 to 20 times of CT rated current 5A (0.2 times step)	Fixed (40ms or less)
Protective DT1		0 to 5 s (0.05s step)
Protective DT2	20 to 240% of CT rated current 5A	0 to 10s (0.1s step)
Protective OC (51)	(2\% step) *1	Select from 4 characteristic curves. Time magnification: 0.5 to 20 times (0.1 times step)

*1: The operating time of protective OC 51 is saturated at about 150 ms .
The operating time will be saturated at 20 times of CT rated current when the setting exceeds 200%.
For example, the operating time becomes 833% ($=2000 \% /(240 \% \times 100)$) of the CT rated current in 240% setting.

1 Features

Includes an energy-saving pattern control feature that contributes to customer energy-saving measures. Easy to connect, easy to set up, easy to monitor, easy to control.
This single unit can connect to anything.

- Dedicated software not required. Can be easily initialized and configured with a general browser.
- Cumbersome device configurations can be completed with just 3 clicks.
- Equipped with a control program that supports energysaving measures, while also enabling energy-saving automated operation.
- Comes standard with various interfaces such as Modbus, Ethernet and microSD. Enables data collection and centralized monitoring.
- Notifies you of abnormalities via email.
- Scheduled for Fall 2018
- Equipped with a USB host function that makes it possible to store forms in batch on a USB memory.
Makes form management easy even in environments without a network connection.
- Self-declared CE compliance with English language display.

Models and Types

Product name	Type
F-MPC Web unit	UM12-10

- Specifications

General specifications

Item		$100-240 \mathrm{~V} \mathrm{AC}$ (permissible range: $85-264 \mathrm{~V} \mathrm{AC}$) $50 / 60 \mathrm{~Hz}$ (permissible range: 47 to 63 Hz)	
Control power	Rating		
	Consumer VA	17 VA or less	-
	Inrush current	At 110 V AC: 15 A or less; At $220 \mathrm{~V} \mathrm{AC}: 30 \mathrm{~A}$ or less	
Isolation resistance		Control power terminal - ground: $10 \mathrm{M} \Omega$ or higher; Communication terminals - ground: $10 \mathrm{M} \Omega$ or higher; Control power terminal - communication terminal: $5 \mathrm{M} \Omega$ or higher (500 V DC megger)	
Vibration		10-58 Hz: One-way amplitude $0.075 \mathrm{~mm} ; 58-150 \mathrm{~Hz}$: Constant acceleration $10 \mathrm{~m} / \mathrm{s}^{2} ; \mathrm{X}, \mathrm{Y}, \mathrm{Z}: 8$ minutes $\times 10$ cycles in each direction	
Impact		$300 \mathrm{~m} / \mathrm{s}^{2}, 11 \mathrm{~ms} ; X, Y, Z: 3$ times in each direction	
Withstand voltage		Control power terminal - ground: 2,000 V AC for 1 minute; RS-485 terminals - ground: 500 V AC for 1 minute; Control power terminal - RS-485 terminals: 2,000 V AC for 1 minute	
Noise resistance		Square wave: Continuous application of $1 \mathrm{~ns} \times 1 \mu \mathrm{~s}$ square wave noise for 10 minutes; Control power circuit: 1.5 kV ; Communication (RS-485, Ethernet, USB); Circuit: Clamp 1.0 kV Radiation electromagnetic field (transceiver): $10 \mathrm{~V} / \mathrm{m}$; Electrostatic, gap discharge: 8 kV ; Contact discharge (housing): 4 kV ; Burst control power circuit (control power - ground) 2 kV Communication (RS-485, Ethernet, USB) circuit: Clamp 1 kV ; Radiation electromagnetic field immunity: $80-1000 \mathrm{MHz}, 10 \mathrm{~V} / \mathrm{m}$; Conduction immunity: $0.15-80 \mathrm{MHz}$ Commercial-use external magnetic field: $30 \mathrm{~A} / \mathrm{m}$	
Lightning impulse withstand voltage		Control power terminal - ground: $2.5 \mathrm{kV}(1.2 \times 50 \mu \mathrm{~s})$ Surge: Control power 2 kV , communication line 1 kV , RS-485 terminals - ground $1.0 \mathrm{kV}(1.2 \times 50 \mu \mathrm{~s})$, control power terminal control power terminal $2.5 \mathrm{kV}(1.2 \times 50 \mu \mathrm{~s})$	
Operating ambient temperature		-10 to $55^{\circ} \mathrm{C}$	
Storage temperature		-20 to $70{ }^{\circ} \mathrm{C}$	
Relative humidity		20 to 90% RH (no condensation)	
Usage atmosphere		No corrosive gas or excessive dust.	
Usage altitude		Altitude $2,000 \mathrm{~m}$ or less	
Permissible instantaneous power failure time		20 ms (at 100 V AC)	
Power interruption compensation		Lithium primary battery (RTC backup only)	
Installation (overvoltage) category		11 (IEC 61010-1)	
Pollution degree		2 (IEC 61010-1)	
Protective structure		IP20 (IEC 61010-1)	
Mounting method		DIN rail or M4 screw (tightening torque up to $1.5 \mathrm{~N} \bullet \mathrm{~m}$)	
Mass		Approx. 240 g (including battery)	

Battery replacement life: 5 years (average ambient temperature of $25^{\circ} \mathrm{C}$

- Communication specification

Ethernet

Item		Specifications	Remarks
Standard		10Base-T/100Base-Tx	IEEE802.3
No. of channels		Maximum 2ch	Auto - MDIX compatible
$\begin{aligned} & \text { ㅁ } \\ & \text { i } \\ & \text { ㅇ } \\ & \text { 응 } \end{aligned}$	Internet	IP	IPv4 support (Factory-default: Ch 1:192.168.0.1, Ch 2:192.168.1.1); Temporary reset by pushing and holding SW1 button for 5 seconds
	Web server	HTTP	Various settings, monitoring data transmission, and remote control
	FTP client	FTP(active/passive)	Function for transmitting collected data to server
	Gateway	TCP	Ethernet - RS-485 (Modbus RTU, F-MPC-Net) communication converter
	NTP client	NTP	Automated set-up for the built-in clock
	Email client	SMTP	Ability to send specified email via internal events (time, triggers) Supported authentication protocols: SMTP AUTH PLAIN, SMTP AUTH LOGIN, SMTP AUTH CRAM-MD5, POP before SMTP (APOP)
	DNS client	DNS	Host name resolution function
	DHCP client	DHCP	Automatic IP allocation function
	Modbus TCP client	Modbus TCP	Modbus TCP server IO memory response read-only
	Loader command client	SX loader command	Loader command IO memory response read-only

Power Monitoring Equipment F-MPC Web unit

Communication specification (continued)

RS-485

Item	Specifications	Remarks
Standard	EIA-485	
No. of channels	2 ch	Settings such as protocol and baud rate can be configured for each channel
Communication protocol	F-MPC-Net,Modbus RTU	Selection (each channel can be individually set), (factory default is F-MPC-Net)
Communication method	Master/slave system	This unit is a master
Performance	Baud rate/bit length/parity/maximum no. of connections	$4800,9600,19200,38400 \mathrm{bps} / 7,8$-bit / None, odd, even / 63 units* (factory default is 19200, 7-bit, odd)
Bias resistance	$100 \mathrm{k} \Omega($ OFF) / $675 \Omega(\mathrm{ON})$ switch	To comply with Modbus standard (Factory default is OFF 100 k Ω

*Calculated via 2 units when the unit supports a maximum of 31 connections.

OScreen specification

D1

Item	Sub-item	Contents
Basic settings	Basic settings	User, network, time settings
	Communication settings	Communication port (RS-485, Ethernet) settings
	Download	Settings information download
	Upload	Settings information, software package upload
	Configuration file management	User macro management
	F-MPC Web information	Refer to info on main body
	Breakdown information details	Critical/minor breakdown information
	Version information	Software version information
	Log download	RAS warning log download
	IO/MEM state	I/O information (Factory default: 19200, 7-bit, odd)
Monitoring screen	Monitoring information	Uploading/downloading of various definition files; shutting down and restarting the system
	Usage rating	Rating information and usage for each interval (1-minute, 30-minute, 1-hour, 1-day, 1-month)
	Usage comparison	2-signal comparison graph for each interval (bars/lines)
	Trends	Line graph for each interval (up to 4)
	Yearly, monthly, daily reports	Viewing of yearly, monthly, and daily reports, as well as batch download of forms
	Demand monitoring	Demand monitoring graph
	Alarm logs	Viewing of alarm and output logs, as well as output control
	Measurement values list	Display of collected measurement values list
Collection settings	Automatic settings	Automatic recognition and setting of devices
	Signal settings	Device and signal settings to register
	Inter-item operation settings	Creating new signals by combining signals
	Group settings	Creation of group trees
	Demand settings	Demand monitoring settings and pattern control settings
	Threshold alarm settings	Threshold alarm and bit alarm settings
	Email and FTP settings	Email and FTP forwarding settings

OStorage data specification

Item	Specifications	Remarks
Data points	Up to 1,000 points	1-minute interval data 1 file/day
Daily report (1-minute interval)	With SD card: 3 years or up to 80.0% capacity Without SD card: 3 months or up to 70.2% capacity	30-minute interval data 1 file/day
Daily report (30-minute interval)	With SD card: 5 years or up to 80.0% capacity Without SD card: 3 months or up to 70.2% capacity	1-day interval data 1 file/month
Monthly report	With SD card: 10 years or up to 80.0% capacity Without SD card: 5 years or up to 70.2% capacity	1-day interval data 1 file/month
Annual report	With SD card: 10 years or up to 80.0% capacity Without SD card: 5 years or up to 70.2% capacity	1-month interval data 1 file/year
Storage medium	Internal non-volatile memory or external non-volatile memory	Internal: Flash memory External: Micro SD card (sold separately); also compatible with SDHC
At power failure	Data before power failure is saved.	Excludes data being collected immediately before power failure
Data transmission method	Transfer via csv format	FTP: Periodic transfer of accumulated request data to PC via FTP SMTP: Periodic transfer of accumulated request data to PC via email http: Manual import to PC via zip compression

Dimensions, mm

■ System configuration

Power Monitoring Equipment

 F-MPC Web unit■ Peak power monitoring by F-MPC Web (Monitoring via power receiving meter pulse)

The F-MPC I/O unit and F-MPC Web unit can be combined to monitor peak power.

Power monitoring unit F-MPC04 series

Description

- F-MPC04 series power monitoring equipment, designed for used in low voltage circuits, can perform electric power management and monitoring from high to low voltage circuit efficiently and economically, used together with F-MPC60B and F-MPC30 series.
- F-MPC04 series consists of 3 types: type UM04 integrated power monitoring unit that can monitors up to 10 feeders, type UM02 multi-circuit power monitoring unit that is spacesaving and can monitor up to 8 feeders in three-phase threewire system, and type UM03 single circuit power monitoring unit, being compact, that has optimum output functions for preventive maintenance, and is best suited for installation in a unit of facility, section, and floor.
- RS-485 communications interface is standard. With our application software of F-MPC-Net power monitoring system, you can automatically display, print, and save the data measured by F-MPC 04 on your PC.

Type				F-MPC04	F-MPC04P			F-MPC04S		F-MPC04E	
				UM04-ARAE	UM02-AR2	UM02-AR3	UM02-AR4	UM03-ARA3G	UM03-ARA3	UM05-AR3	UM05-AC3
				Integrated power monitoring unit	Multi-circuit power monitoring unit			Single-circuit power monitoring unit		Single-circuit power monitoring unit	
Measuring function	No. of phase and wire	1-phase	-wire	10 circuits	12 circuits	-		1 circuit	1 circuit	1 circuit	
		1-phase 3-wire 3-phase 3-wire		10 circuits		8 circuits	-				
		3-phase 4-wire		6 circuits	-	-	4 circuits	-	-	-	
	No. of voltage circuit			2	1 -			1	1	1	
	Measuring item	Voltage [V]		\bigcirc		0		0	\bigcirc	0	
		Current [A]		\bigcirc		0		\bigcirc	\bigcirc	0	
		Power [W]		\bigcirc		0		\bigcirc	\bigcirc	\bigcirc	
		Active power [Wh]		0		0		0	0	0	
		Reactive power [var]		\bigcirc		0		\bigcirc	\bigcirc		
		Reactive energy [varh]		\bigcirc		-		\bigcirc	\bigcirc	\bigcirc	
		Power-factor		0		\bigcirc		0	\bigcirc	\bigcirc	
		Leakage current [lo]		0		-		\bigcirc	-	-	
		Basic component of leakage current		\bigcirc	-			$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	-	-	
	Maintenance item	Demand	Current	0	-			0	\bigcirc	-	
			Power	\bigcirc	-			\bigcirc	\bigcirc	-	
			Max. current	\bigcirc	-			\bigcirc	\bigcirc	-	
			Max. power	\bigcirc	\bigcirc			\bigcirc	\bigcirc	-	
		Max. voltage value		\bigcirc	\bigcirc			0	-	\bigcirc	
		Min. voltage value		0	\bigcirc			-	-	\bigcirc	
	Harmonic current			\bigcirc	-			-		-	
Protection	Current prealarm (OCA)			0	-			\bigcirc (Demand only)		-	
	Leakage current prealarm (OCGA)			\bigcirc	-			\bigcirc	\bigcirc	-	
	Leakage current trip (OCG)			\bigcirc	-			\bigcirc	-	-	
Communications interface				RS-485, Modbus	RS-485			\bigcirc	-	RS-485, Modbus -	
Display and setting				\bigcirc	Display and setting unit UM02X-S			RS-485	RS-485	Display and setting unit UM05X-S	
Devices to be connected	Current sensor (Current Transformer:CT)			$\bigcirc^{* * 1}$	CT: 5, 50, 100, 200, 400, 800A						
	ZCT (separately installed)			\bigcirc	-			$\frac{0}{0}$	-	-	-
	MCCB with ZCT			\bigcirc	-				-		-

[^2]
■ System configuration example

Low voltage

Integrated power monitoring unit, UM04

Description

Integrating complete functions required for power distribution and power line data management in a single unit (up to 10 circuits for 3-phase 3-wire system)

- Supports multiple power distribution lines

UM04 allows economical management of each facility and installation by means of communications interface.

- Easy mounting to existing switchboards Split-through type CTs enables UM04 s easy mounting to existing boards.
- Flexible energy management UM04 manages power line data such as measurement, preventive maintenance, maintenance and electricity quality, and transmit those data to upper level controller, thus promises energy and labor-saving.
- Harmonics current measurement The third, fifth, seventh, and total harmonic current can be measured.
- Monitor insulation deterioration and implement preventive maintenance by measuring leakage current.
Provides deterioration trend analysis with trend data and preventive maintenance with 2-stage output (leakage current pre-alarm and leakage current relays).
- Compatible with MODBUS RTU protocol.

Select between the MODBUSRTU protocol or the F-MPCNet protocol for the F-MPC series.

UM04-ARA4

Ст-BOX

- Handles digital input.

Four inputs (ON/OFF status and pulse count digital signals) from the relay connector terminal block.

- Related Equipment

Molded case circuit breakers with ZCT and split type current transformers are also introduced as related products, RS16 Terminal Relay which outputs leakage current prealarm and the connector terminal-block which outputs kWh pulse, are also explained (UM04 use only).

Type number nomenclature
Integrated power monitoring unit

UM04-ARA4

■ Types

Description	Specification	Type	Remarks
Integrated power monitoring unit	RS-485, 2VT-conformed	UM04-ARA4	
CT-BOX	For CT secondary current 5A	UM04X-5	
	For CT secondary current 1A	UM04X-1	
Related product	15 output	RS16-DE04H	See page D1-257.
Terminal Relay	Length 1m/2m/3m	AUX014-20 \square	See page D1-257.
Connector cable	kWh pulse output Connector terminal block	AU-CW21B1-04	See page D1-258.

Applicable CT

Current transformer (CT)	CT secondary current	Applicable CT-BOX	Applicable integrated power monitoring unit
Split CT Type CC2C76- $\square \square 1$ Type CC2D74- $\square \square \square 1$	1A	UM04X-1	UM04-ARA4
General-purpose CT XX/1A	1A		
General-purpose CT XX/5A	5A	UM04X-5	

Applicable circuit	CT-BOX	
	One unit	Two units
Three-phase/3-wire	5 feeders max.	10 feeders max.
Single-phase/2-wire		
Single-phase/3-wire		6 feeders max.
Three-phase/4-wire	3 feeders max.	

* The number of countable feeders depends on the number of CT boxes.

Item		Specification
Rating	Rated frequency	50 or 60 Hz (Selectable by the setting)
	Rated voltage	Applicable to both 110 V and 220V AC, 110V AC for use with a VT secondary circuit
	Rated current	Depends on CT-BOX specifications (5A, 1A in a CT secondary circuit, power consumption: 0.1 VA max., excluding power loss in the external cable resistance)
	Zero-phase CT	EW type or MCCB with a ZCT (zero-phase current transformer) type (FUJI model)
Control power supply		85 to 264V AC (By exclusive control power supply terminal)
Inrush current		40A max., 3ms max. (AC) 85A max., 3ms max. (DC)
Control power consumption *1		25VA max. (Power monitoring unit + two CT-BOXes + Terminal Relays with all contacts ON)
Rated input	Voltage input (VT ratio)	100 V direct input, 200 V direct input VT primary/secondary : AC220/110V, AC440/110V, AC440/220V, AC240/110V, AC400/110V, AC3.3k/110V, AC6.6k/110V
	Current input (CT ratio)	Primary rating setting : 10A, 15A, 20A, 25A, 30A, 40A, 50A, 60A, 75A, 80A, 100A, 120A, 150A, 160A, 200A, 250A, 300A, 320A, 400A, $500 \mathrm{~A}, 600 \mathrm{~A}$ $630 \mathrm{~A}, 750 \mathrm{~A}, 800 \mathrm{~A}, 100 \mathrm{~A}, 1200 \mathrm{~A}, 1250 \mathrm{~A}, 1500 \mathrm{~A}, 1600 \mathrm{~A}, 2000 \mathrm{~A}, 2500 \mathrm{~A}, 3000 \mathrm{~A}, 3150 \mathrm{~A}, 3200 \mathrm{~A}, 4000 \mathrm{~A}, 5000 \mathrm{~A}, 6000 \mathrm{~A}$, 7500A
Ambient temperature		-10 to $+55^{\circ} \mathrm{C}$ (no icing or no condensation)
Storage temperature		-20 to $+70^{\circ} \mathrm{C}$ (no icing or no condensation)
Humidity		20 to 90\% RH (no condensation)
Atmosphere		No corrosive gas and no heavy dirt and dust
Alarm and shutdown outputs		Continuous output current: 1A max. (with output of terminal relay, RS16-DE04H) Make and break current: 250V AC 5A, 30V DC 5A max.
Insulation resistance		$10 \mathrm{M} \Omega$ min.: between ground and electric circuits connected together $5 \mathrm{M} \Omega$ min.: between electric circuits, between contacts
Dielectric strength		2000 V AC, 1 minute between ground and electric circuits connected together, excluding T-link and RS-485 signal circuits
Impulse		$4.5 \mathrm{kV}(1.2 \times 50 \mu \mathrm{~s})$ between ground and electric circuits connected together, excluding T-link and RS-485 signal circuits
Momentary overload capability		20 times rated current, nine times for 0.5 s , once for 2 s
Shock resistance		Approx. $300 \mathrm{~m} / \mathrm{s}^{2}$, three times in each of X, Y, and Z axes
Noise immunity		1 to 1.5 MHz damped oscillation noise having 2.5 to 3 kV peak voltage for 2 s 1.5 kV square wave (rise time: 1 ns , pulse width: 1 нs) for 10 minutes continuously
Vibration resistance		JIS C 60068-2-6 $10-58 \mathrm{~Hz}$: single amplitude 0.075 mm . $58-150 \mathrm{~Hz}=$ constant accelation $10 \mathrm{~m} / \mathrm{s}^{2} \mathrm{X}, \mathrm{Y}, \mathrm{Z}$ directions 8 minutes X10 cycles
Electrostatic noise resistance		Mounting steel panel surface: $\pm 8 \mathrm{kV}$ F-MPC04 (UM04) front panel surface: $\pm 15 \mathrm{kV}$
Permissible momentary power failure		20 ms , continuous operation (excluding display)
Mass		Power monitoring unit UM01: 1000g, CT-BOX: 300g Terminal relay: 200g

Note *1 The control power consumption on the table applies to where CT-BOXes and Terminal relays are connected to the power monitoring unit UM04.

- Measurement and display specifications

Measurement type	Effective measuring range	The main body display	Communication data	Accuracy (\%)	Remarks
Current: $I(r), I(s), I(t)$	$\begin{aligned} & 0,0.5 \% \text { to } 150 \% \text { of CT } \\ & \text { secondary rated current } \end{aligned}$	4 digits	4 digits	$\pm 2.5 \%$ FS	" 0.00 " is displayed, if the measured value is about 1.0% or less.
Voltage: *3 $\mathrm{V}(\mathrm{uv}), \mathrm{V}(\mathrm{vw}), \mathrm{V}(\mathrm{wu})$	VT secondary voltage: 3Ø3W : max 264V 3Ø4W (Phase voltage): max.264V 3Ø4W (Line voltage): $\sqrt{3 \times 264 V}$			$\pm 2.5 \%$ FS	VT secondary voltade is jointly used as internal control power supply. (For U-V)
Zero-phase current lo	0,50 to 3600mA			$\pm 20 \%$ FS	" 0 " is displayed, if the measured value is about 50 mA or less.
Active power *4*5	0 to 3.5 kW (220V) as converted to current transformer secondary value	4 digits with the code	4 digits with the code	$\pm 2.5 \%$ FS	Two-wattmeter method: Measured when the value is 0.4% or higher of the rated current. (Ir, It, Vuv, Vvw)
Reactive power *4*5	0 to $3.5 \mathrm{kvar}(220 \mathrm{~V})$ as converted to current transformer secondary value			$\pm 2.5 \%$ FS	Two-wattmeter method
Power factor *4	Lead : 0\%-100\%-Lag : 0\%	3 digits with the code	4 digits with the code	$\pm 5 \%$ The " 90° " phase angle conversion	
Active electric power	0 to 99999 (kWh) The effective power quantity of the plus 0 to 99999 (kWh) The effective power quantity of the minus	5 digits	*6	Equivalent to ordinary class specified in JIS	$\pm 2.0 \%$ (Power factor of 1 between 5% and 120% of CT primary rated current) $\pm 2.5 \%$ (Power factor of 0.5 between 10% and 120% of CT primary rated current)
The reactive energy	0 to 9999 (kvar) The reactive energy of the plus 0 to 9999 (kvar) The reactive energy of the minus	none		$\begin{array}{\|l} \hline \pm 0.5 \% \\ \text { (No display) } \end{array}$	
The voltage minimum value	"264V from 85V" in VT secondary of each phase	4 digits		$\pm 2.5 \%$ FS	
The voltage maximum value	"264V from 85V" in VT secondary of maximun-phase			$\pm 2.5 \%$ FS	
Harmonic current	3rd \& 5th order : 0, 2.5\% to 150\% 7th order : 0, 5.0% to 150%			$\begin{aligned} & \pm 2.5 \% \\ & \text { (7th order: } \pm 5 \% \text {) } \end{aligned}$	*7

Note : *1. The measurement accuracy includes the error in the CT boxes and ZCT. The error in the combined VTs and CTs are not included.
*2. Current, voltage, and power performance characteristics are according to JIS C 1102 (indicating electrical measuring instruments). The measurement display value is the average value over approximately 1 second.
*3. The values in the table are the line voltages for 3-phase, 3 -wire systems and the phase voltages for 3 -phase, 4 -wire systems. For 3 -phase, 4 -wire applications, the setting in this table can be used to display either the phase voltages or line voltages.
*4. Selling/purchasing for power measurement and lead/lag for power factor measurements are displayed with one sign (blank for positive). The meaning of positive/negative for each measurement item is given below.
$* 5$. The maximum values of the active power and reactive power are $\pm 3.5 \mathrm{~kW}$ at a 5 A secondary current for 3 -phase, 3 -wire systems, $\pm 0.69 \mathrm{~kW}$ at 1 A for 3 -phase, 3 -wire systems, $\pm 6.0 \mathrm{~kW}$ at a 5 A secondary current for 3 -phase, 4 -wire systems, and $\pm 1.2 \mathrm{~kW}$ at a 1 A secondary current for 3 -phase, 4 -wire systems.
*6. For the F-MPC-Net protocol, the lower four digits of the display are sent. For the MODBUS RTU protocol, 0 to 999999.999 kWh is sent and the step value for the total countup depends on the VT ratio and CT ratio.
*7. For 3-phase, 3-wire systems, the harmonic currents for phases R and T are measured. For 3-phase, 4-wire systems, the harmonic currents for phases R, S, and T are measured.

The sign " \pm " in electric measuring

The sign " \pm " is used to display "LEAD/LAG" in power-factor, measuring and "electric power selling/ purchase" in electric power measuring. No signs are used if a value is "+". The sign " \pm " has the following meanings depending on the measured items.

- Active power: kW
+: Power purchase (Consumed electric power)
-: Electric power selling (Inverse electric power flow)
- Reactive power: kvar
+: Lagging current by reactive volt-ampere meter method
-: Leading current by reactive volt-ampere meter method
* "LEAD/LAG" reverses with electric power selling/purchase.
- Power factor: COS φ
+:LEAD -: LAG

- Demand measurement

Item	Specification
Current $(\mathrm{I}(\mathrm{r}), \mathrm{I}(\mathrm{s}), \mathrm{I}(\mathrm{t})$) Effective power Zero-phase current (rms:Io, $50 / 60 \mathrm{~Hz}: \mathrm{Iob})$ Harmonics currents, voltage	Time: Select one from 0, 1 to 15 minutes (1 minute increments) and 30 minutes it at the initial setting (common to all 10 circuits).

Specifications of a leakage current relay

Sensitive current

Setting value	$200 / 500 / 1000 / 2000 / 3000 \mathrm{~mA}$ or Lock (Io or lob selectable)
Operating Level	50 to 100% of setting value (Operate at less than 50%, no opearate at 100%)

Operation time characteristics

Setting time	Inertia non-operating time	Operating time
0.1 s	-	100 ms max.
0.3 s	150 ms min.	0.3 s max.
0.5 s	250 ms min.	0.5 s max.
1.0 s	500 ms min.	1.0 s max.
3.0 s	$1,500 \mathrm{~ms}$ min.	3.0 s max.

Note: • Sensitive current and operation time can be set by an arbitrary combination.
-The values on the table is for a trip relay's specifications. The pre-alarm relay operates at half the operating level on the table, and its operation time is 10 s fixed. The pre-alarm relay can be used as an alarm against leakage current increase in case of cable insulation deterioration or flood

- Data display at fault occurrence

Pre-alarm of load current, pre-alarm of leakage current relay (auto-reset), maximum current indication at circuit interruption (indication reset by resetting)

- kWh-pulse-output specifications (for products with a kWh-pulse-output feature)
Transistor open collector output: 35V DC, 50mA max., (residual voltage at ON state: 2.5 V max.)
Output pulse width: $200 \mathrm{~ms} \pm 20 \mathrm{~ms}$
Output period: $1,000 \mathrm{~ms} \mathrm{~min}$.
Output pulse rate: $10^{\mathrm{n}} \mathrm{kWh} / \mathrm{pulse}, \mathrm{n}=-2,-1,0,1,2$, or 3 (selected from VT and CT ratio.)
- ZCT with Leakage Current Relay

The UM04 can be used together with a MCCB with ZCT or a zero-phase current transformer.

■ System configuration

With an integrated power monitoring unit UMO4, you can easily construct a low-voltage power distribution system equipped with leakage current measuring, leakage current pre-alarm, and earth leakage circuit shutdown.

Dimensions, mm

- Integrated power monitoring unit, UM04

*Allow approx. 100 mm space for the connector cable.

Panel cutout

Terminal connection diagram

- CT-BOX, UM04X

Power Monitoring Equipment

 Power monitoring unit F-MPC04P
Multi-circuit power monitoring unit, UM02A

Description

Integrating measuring functions required for power monitoring in one unit

- A single unit measures multiple circuits

A single UM02A can measure up to 8 feeders in 3-phase 3 -wire, 12 feeders in single-phase 2 -wires and up to 4 feeders in 3-phase 4-wire circuit.

- Easy installation into existing switchboards

Compact UM02A can be easily installed into on-site power distribution or lighting panel, irrespective of new panel or existing panel, to create power monitoring system economically.

- On-site measuring instrument

UMO2A can be used an on-site measuring instrument by combining with an optional display and setting unit UM02AX-S.

- Communication interface

As UM02A has an RS-485 communications interface as standard, it can communicate with other power monitoring equipment with RS-485

■ Type number nomenclature

Multi-circuit power monitoring unit (Measuring unit)
UM02A-AR 3

Basic type
UM02A-AR: Measuring unit

Applicable circuit
2: Single-phase 2-wire, up to 12 feeders
3: 3-phase 3-wire, Single-phase 3-wire, Single-phase 2-wire, up to 8 feeders
4: 3-phase 4-wire, up to 4 feeders

■ Type and applicable circuit

Description	Applicable circuit	Type
Measuring unit	Single-phase 2-wire, up to 12 feeders	UM02A-AR2
	3-phase 3-wire, Single-phase 3-wire, Single-phase 2-wire, up to 8 feeders	UM02A-AR3
	3-phase 4-wire, up to 4 feeders	UM02A-AR4

Sold separately
Display and setting unit
The TP48X socket and connecting cable are provided as accessories.

■ Specifications F-MPC04P (UM02)

- General specifications

Item		Specification
Ratings	Voltage	Direct input: 100 or $200 \mathrm{~V} \mathrm{AC}, 400 \mathrm{~V}$ AC (AR4 only) VT primary/ secondary: 220, 440V AC, 3.3k, 6.6kV AC/110V AC, 440/220V AC "1
	Current	Split CT: 5, 50, 200, 400A AC Small split current sensor CT: 5A AC (primary rated set range 10 to 7500A) ${ }^{\text {¹ }}$
Control power supply		100/200V AC common use (85 to 264V AC) AR2: between terminals P1-N, AR3: between terminals U-V, AR4: between terminals P1-P2
Inrush current		15A max., 3ms max. (100V AC 50Hz) 30A max., 3ms max. (200V AC 50Hz)
Control power consumption		20 VA or less (or approx. 15VA at $200 \mathrm{~V} \mathrm{AC}, \mathrm{10VA} \mathrm{at} \mathrm{100V} \mathrm{AC)}$
Ambient temperature		Operating: -10 to $55^{\circ} \mathrm{C}$ (no icing or no condensation) Storage: -20 to $70^{\circ} \mathrm{C}$ (no icing or no condensation)
Humidity		20 to 90\% RH (no condensation)
Atmosphere		Free from corrosive gases and excessive dusts or particles
Insulation resistance		$10 \mathrm{M} \Omega \mathrm{min}$. between electric circuits and ground
Dielectric strength		2000V AC, 1 minute (2500V AC, 1 minute for AR4) between control power circuits and ground
Lightning impulse noise resistance		$4.5 \mathrm{kV}(1.2 \times 50 \mu \mathrm{~s})$ between control power circuits and ground (6.0kV for AR4)
Momentary overload capability		20 times rated current, 9 times for 0.5 s .
Vibration resistance		JIS C 60068-2-6 10 to 58 Hz : single amplitude of 0.075 mm , 58 to 150 Hz , constant acceleration of $10 \mathrm{~m} / \mathrm{s}^{2} 8$ minutes $x 10$ cycles in each of X, Y, and Z directions
Shock resistance		JIS C 60068-2-27 Half sine wave $300 \mathrm{~m} / \mathrm{s}^{2}$, for $11 \mathrm{~ms} \times 3$ times in each of X, Y, and Z directions
Noise immunity		1.5 kV square wave (rise time: 1 ns , pulse width: $1 \mu \mathrm{~s}$) for 10 minutes continuously
Permissible momentary power failure		20 ms (continuous operation) except RS-485 communications
Mass		Measuring unit: Approx. 500g, Display and setting unit: Approx. 200g

Note *1 Make VT and CT ratio settings through the display and seting unit UM02X-S or from the host controller.

- Measurement specifications

Item	Effective measurement range		Display	Accuracy *1
Current (N-phase current measured in AR4)	With split CT (200A and 400A AC) combined 0, 0.4\% of In to 500A With small split current sensor (50A AC) combined 0, 0.4% of In to 50A with small split current sensor (5A) combined *4 0 to n times CT rating		4 digits	$\pm 1.5 \%$
Active power			$\pm 2.5 \%$ for S-phase current of AR3 and N-phase current of AR4	
Reactive power ${ }^{2}$				
Power-factor			$\square . \square$	$\pm 5 \%$ (converted into a phase angle of 90°)
Active electric energy ${ }^{\text {2 }}$			5 digits	Equivalent to JIS ordinary class *4
Max. active power ${ }^{3}$	Same as above. (with a demand time set	$0,1,5,10,15$, or 30 min .)	4 digits	$\pm 1.5 \%$
Min. voltage each phase ${ }^{2}$	AR2, R3 85 to 264 V (directly or	AR4 Phase voltage 50 to 288 V	4 digits	$\pm 1.5 \%$
Max. voltage *2	VT secondary voltage conversion) The minimum and maximum voltage are average values for 0.3 s .	(directly or VT secondary voltage conversion) Line voltage 86 to 498 V The minimum and maximum voltage are average values for 0.3 s .		$\pm 1.5 \%$

Notes ${ }_{* 1}^{* 1}$ Measurement accuracy does not include CT and current sensor. $\quad{ }^{* 3}$ Max active power and active electric energy values can be reset by the display
$*^{2}$ In measurement mode display is the number of digits of RS-485 communications data. The display and setting unit does not display communications data on reactive power, minimum voltage, and maximum voltage values.
and setting unit and host controller. And, when VT ratio or CT ratio is changed, these are autamalically reset.
${ }^{* 4}$ With 1 -turn or 3 -turn primary winding selected for the 5 A small split current sensor, the lower limit of minute current measurement is selected as specified below.

Classfication	Measurement and display range	Measurement lower limit (Electric energy starting current)		
	$0,2 \%$ to rating $\times 10$	2% of rating	0 to rating: $\pm 1.5 \%$ of rating	$\pm 2.5 \%$ $(5 \%$ to 100% of rating, load power factor -0.8 to 1.0 to +0.8$)$
1 turn	$0,0.7 \%$ to rating $\times 3$	0.7% of rating	Exceeding rating: $\pm 1.5 \%$ (FS)	

Note: * Sampling interval/measurement display value (communication) of current and power, and sampling and integration intervals of electric energy are shown below. In the case of an intermittent load, such as a welding machine, accurate measurement may be disturbed and therefore the use of the single-circuit F-MPC04S (refer to page D1-229) is recommended.

- Sampling interval and display value

Type	Sampling interval/display value of current and power (Communication)	Sampling and cumlative interval of power
UM02A-AR2	Approx. 0.2s / Average voltage for aprox. 1.5s	Approx.0.2s
UM02A-AR3	Approx. 0.2s / Average voltage for aprox. 1.5s	Approx. 0.2s
UM02A-AR4	Approx. $0.1 \mathrm{~s} /$ Average voltage for aprox. 0.4 s	Approx. 0.1 s

Display and setting unit UM02X-S, specifications

Item	Specification	Remarks
Control power supply	Supplied from the measuring unit UM02-AR	
Measuring unit UM02A-AR communications specifications	ElA-485 (always 19200bps fixed)	
Number of connectable measuring unit UM02A-AR	5 max.	UM02A-AR2, AR3, AR4
Max. cable length between UM02A-AR and UM02AX-S	$23 m$	Total length between UM02AX-S and all UM02A-ARs
Display item	Operating status, measurement value VT, CT setting value, fault	Selective indication by a switch
Setting	Voltage, current (CT), demand time, pulse multiplication rate, No. of turns of CT secondary winding, host controller communications mode (different communications interface)	UM02A-AR incorporates a different RS-485 interface to communicate with a host controller.

Note : The display and setting unit UM02AX-S provides a function to start initial communications to recognize the UM02A-AR automatically when UM02AX-S is turned on. If on-site indication is not necessary once the setting to the measuring unit UM02A-AR is complete, UM02A-AR fully operates even without UM02AX-S.

■ Communications specifications

Item		Specification
Standard		EIA-485
Transmission system		2-wire half duplex
Data exchange		1: N (F-MPC04P, UM02-AR) polling/selecting
Transmission distance		1000m (total length)
No. of connectable units		Max. 32 (including master)
Station number setting		01 to 99 (set with digital switch)
Transmission characters		ASCII
Transmission speed		4800, 9600, 19200 or 38400 bps (selectable)
Data format	Number of start bits	1 (fixed)
	Data length	7 or 8 bits (selectable)
	Parity bit	None, even, or odd (selectable)
	Number of stop bits	1 (fixed)
	BCC	Even horizontal parity

Note : Use the display and set unit to change the transmission setting.
The communications specifications cannot be changed through the host controller.

Dimensions, mm

- Measuring unit UM02A-AR

Terminal screw : 34-M3 (with washer)
Terminal screw tightening torque : 0.5 to $0.6 \mathrm{~N} \cdot \mathrm{~m}$ Applicable amplifier terminal diameter: $\varnothing 5.8$ or less

- Display and setting unit UMO2AX-S

System configuration

Note: * The display and setting unit UM02AX-S is a local area communications master and can monitor and be able to set maximum five measuring units, UM02A-ARs.
** Station address setting of measuring unit UM02A-AR
Use a digital switch on the measuring unit to set a different station address (communication address to host controller). In local area communication of the display and setting unit UM02AX-S, the UM02AX-S will automatically read out the address of the measuring units connected with cables for unit connection, and communicate with hem.,

Single circuit power monitoring unit, UM03

Description

Integrating measuring functions required for power monitoring in one unit

- Output functions for preventive maintenance selectable
- Power alarm/current prealarm
- kWh pulse output
- Leakage current alarm, leakage current prealarm output (model with leakage current measuring function) only
- Capable of measuring inrush current of welders
- High-speed sampling and calculation of voltage and current
- Compact design allows installation almost anywhere.
- Space-saving construction simplifies installation.
- Suited for monitoring individual equipment, section, and floor

- Networking capability

- RS-485 interface.
- Can be connected to power distribution system same way as the power monitoring equipment F-MPC 60B, 30, 04 (UM04, UMO2) series products

- Type numbers

Single circuit power monitoring unit	Type	
Leakage current measuring function	Not provided	UM03-ARA3
	Provided	UM03-ARA3G

■ System configuration

Note : As CTs, use type numbers CC2D81-0057, CC2D81-0506, CC2D652008, CC2D54-4009, CC2B65-2008, and CC2B54-4009. Refer to page D1-255. General-purpose CTs (secondary rated current 5A or 1A) cannot be connected directly. Use the general-purpose CT (5A) together with type number CC2D81-0057. Use dedicated ZCT as combination ZCT with the UMO3-ARA3.

■ Specifications

- General specifications

Applicable circuit		Single circuit 3-phase 3-wire: 2-CT, single-phase 3-wire: 2-CT, single-phase 2-wire: 1-CT
Control power supply		100 to 200 V AC (85 to 264 V AC) $50 / 60 \mathrm{~Hz}$ (45 to 66 Hz)
Inrush current		$15 \mathrm{~A}, 3 \mathrm{~ms}$ or less (at $110 \mathrm{~V} \mathrm{AC}, 50 \mathrm{~Hz}$) $30 \mathrm{~A}, 3 \mathrm{~ms}$ or less (at $220 \mathrm{~V} \mathrm{AC}, 50 \mathrm{~Hz}$)
Control power consumption		Approx. 7VA (at 220V AC) Approx. 5VA (at 110V AC)
VT consumed burden		Approx. 0.2VA
Continuous overload capability	Current input circuit	110\% of maximum setting value (150\% of rated current), 2 hours
	Voltage input circuit	291V AC (1.1×264V AC), 2 hours
Short-time overload capability	Current input circuit	2000\% of max. setting value (150\% of rated current), 9 times for 0.5s
	Voltage input circuit	200\% of max. setting value (264V AC), 9 times for 0.5 s
Vibration		10 to 58 Hz 0.075 mm (one-way amplitude) 58 to 150 Hz : constant acceleration $10 \mathrm{~m} / \mathrm{s}^{2}, 10$ cycles for 8 min in each X, Y, and Z directions
Shock		$300 \mathrm{~m} / \mathrm{s}^{2}$, in each X, Y, and Z directions, 2 times
Withstand voltage / Insulation resistance (500V DC megger)		$2 \mathrm{kV} / 10 \mathrm{M} \Omega$ Between power supply terminals connected together and other terminals connected together $2 \mathrm{kV} / 10 \mathrm{M} \Omega$ Between measurement input terminals connected together and other terminals connected together $2 \mathrm{kV} / 10 \mathrm{M} \Omega$ Between alarm output terminals connected together and other terminals connected together $500 \mathrm{~V} / 10 \mathrm{M} \Omega$ Between watthour pulse output terminals connected together and other terminals connected together
Ambient temperature		-10 to $+55^{\circ} \mathrm{C}$
Storage temperature		-20 to $+70^{\circ} \mathrm{C}$
Humidity		20 to 90\%RH (no condensation)
Atmosphere		Free from corrosive gases and excessive of dusts
Grounding		Type D ground (100 Ω or less)
Allowable momentary power failure time		20 ms (operation will continue)
Altitude		2,000m or less
Mass		Approx. 400 g (main unit only, CT excluded)

- Measurement specifications

Item	Effective measurement range	Display	Accuracy *1
Current (R/S/T), demand current Max. demand current value	- With CT (200A AC) $0,0.4 \%$ of $\ln (0.8 \mathrm{~A})$ to 300A - With CT (400A AC) $0,0.4 \%$ of $\ln (1.6 \mathrm{~A})$ to 600 A - With CT (5A) $0,0.4 \%$ of $\ln (0.2 A)$ to 50 A 0 , to 1.5 times CT rating (for 5 A) (converted into CT secondary: 7.5A) (Max. display range: up to 9,999A) - Demand time setting: 0, 1 to 15 min (by 1 min step) 30min setting: Available	4-digit	$\pm 1.5 \%$: R- and T-phase $\pm 2.5 \%$: S-phase
Demand value and max. demand value of total harmonic current *2		4-digit	$\pm 2.5 \%$
Active power (\pm) Demand power Max. active demand power value		4-digit	$\pm 1.5 \%$
Reactive power (\pm)		4-digit	$\pm 3 \%$
Power factor (\pm)		3-digit	$\pm 5 \%$ (Converted into a phase angle of 90°)
Active electric energy (+only)		5-digit	Equivalent to JIS ordinary class (pf: 0.5-1.0--0.5)
Reactive electric energy (\pm absolute value addition)		5-digit	$\pm 5 \%$
Voltage	Converted into an input voltage 60 to 264 V AC	4-digit	$\begin{aligned} & \pm 1.5 \% \\ & \pm 2.5 \%: \text { Vv-w } \end{aligned}$
Frequency *3	45 to 66 Hz *2	3-digit	$\pm 0.5 \%$
Leakage current (Io/lob) *4 Max. demand value	0, 10 to 1000 mA	4-digit	$\pm 2.5 \%$

Note: *1 The measurement accuracy is a value for FS (full span).
*2 The total harmonic current relates only to phase R and phase T. Only the demand value and max demand value are displayed. The current value is not displayed.
*3 If the frequency is out of the measurement range (lower than 45 Hz or higher than 66 Hz), $0.0[\mathrm{~Hz}]$ is displayed.
*4 Maesurement of leakage current is possible only with UM03-ARA3G.

- Output specifications

Item	UM03-ARA3	UM03-ARA3G	Specification	
Watt-hour pulse output	Provided	Provided	Transistor open collector output 35V DC 100mA	
Alarm output	Current prealarm (OCA), power alarm *	Provided	Provided	Replay output 250V AC 1A
	Leakage current prealarm (OCGA) (lo operation)	Not Provided	Provided	
	Leakage current alarm (OCG)	Not Provided	Provided	

Note: * Choose the current prealarm (OCA) output or power alarm by change of setting.

Watthour pulse output details

Output specifications	35 V DC 100 mA (residual 2.5V or less at ON)
Output pulse width	$100 \mathrm{~ms} \pm 20 \mathrm{~ms}$
Output interval	200 ms or more
Pulse multiplication rate	$10^{\mathrm{n}} \mathrm{kWh} / \mathrm{pulse}$ ($\mathrm{n}=-3$ to 2 setup)

Alarm output details

	Setting range		Accuracy	
	Operate value	Time	Operate value	Time
Current prealarm (OCA) *1	I: 20 to 120% of rated value, Lock (5\% step)	Depending on the demand time setting	$\pm 5 \%$ (rated min $\pm 1.5 \%$)	$\pm 10 \%$
Power alarm *1	0 to 9999kW (1kW step)			
Leakage current alarm (OCG) (lo operation)	Operate current 100, 200, 500mA, Lock	0.1, 0.3, 0.5, 1.0s	$75 \% \pm 5 \%$ of setting value	$75 \% \pm 5 \% \text { of }$ setting value ($\mathrm{min} \pm 25 \mathrm{~ms}$)
Leakage current prealarm (OCGA)	$\begin{aligned} & \hline 50 \pm 5 \mathrm{~mA} \\ & 100 \text { to } 500 \mathrm{~mA} \\ & \text { (50mA step), Lock } \end{aligned}$	$\begin{aligned} & \text { 0.1, 0.3, 0.5, 1.0, } \\ & 10 \text { s or demand time *2 } \end{aligned}$	$\pm 5 \%$	$\pm 5 \%$

[^3]${ }^{* 2}$ When demand time is selected, the unit operates on lob (leakage current only with fundamental wave).

Communications specifications

Item	Specification	Factory setting
Standard	EIA-485	-
Transmission system	2-wire half duplex	-
Data exchange	$1:$ N polling/selecting	-
Transmission distance	1000 m (total length)	-
No. of connectable units	max.32 (including master)	-
Station number setting	1 to 99	Without station number setup
Transmission characters	ASCII	-
Transmission speed	4800,9600, or 19200 bps (selectable)	19200 bps
Data format	Number of start bits	1 (fixed)

Front panel

\} Display item, or unit LEDs

Selection switches

- Terminal layout

Note: Alarm output terminal(2) (3) and ZCT input terminal (1) (2) of the UM03-ARA3 (without leakage current measuring function) are NC terminals. Do not connect anything to these terminals.

Dimensions, mm

■ Features

[Common]

- The F-MPC Series is a single-circuit internally mounted power monitoring unit.
- More compact and lightweight at only $1 / 2$ the external dimensions and $1 / 3$ the mass (compared with F-MPC04S).
- JIS regular grade measurement accuracy. It can measure electric energy (watt hours) even at light loads.
- Reduces power consumption by 30% (compared with the F-MPC04S).
- Easy set-up with rotary switch and dip switch.
- Measurement data can also be displayed on the panel by using the separately sold indicator.

[UM05-AR3]

- Collected data can be stored on an SD card and displayed on a PC. There is no need to build a communication system. (UM05-AR3 is the type that comes with a communication function.)
- Comes with a PC application for easily analyzing and graphing the data stored on SD cards (You can download it from our website.)

[UM05-AR3]

- Comes equipped with an RS-485 communication function (UM05-AR3 only).

[^4]
*The primary side of the inverter can also be monitored.
\square Wiring diagram

Model, type, part class

Part name		Type
Single-circuit, power monitoring unit, RS-485 communication type		UM05-AR3
Single-circuit, power monitoring unit, SD card type		UM05-AC3
Indicator and setter (F-MPC04E only)		UM05X-S
Screw mounting bracket (10 ct. set)		BZOSET
Split CT Primary rated current (Manufactured by Fuji Electric Technica)	5A	CC2D81-0057
	50A	CC2D81-0506
	100A	CC2D71-1004
	200A	CC2D65-2008
	400A	CC2D54-4009
	800A	CC2D52-8009

Connection Terminal and Switch

F-MPC04E: Indicator and Setter (Option)

This is a dedicated indicator and setter to be used when creating a 1-to-1 connection with the F-MPC04E. Use it to display measurement values by mounting it to the panel surface.
It can also be used to change the settings of the F-MPC04E power monitoring unit.
(Note) Only for the F-MPC04P: It cannot be used with the indicator and setter.

Panel mounting

Indicator and setter setting items

Setting items	Contents of the setting	UM05-AR3	UM05-AC3	Factory default
CT ratio	When using a 5 A rated CT , set the primary rated current of the general-purpose CT . (Can be set at 7500 A or lower)	\bigcirc	\bigcirc	-
VT ratio	For 264 V systems or higher, set the VT ratio for the external VT. (Can be set at $6600 / 110 \mathrm{~V}$ or lower)	\bigcirc	\bigcirc	Direct input
Pulse multiplying factor	You can switch to "Standard-Squared", if you want to monitor electric energy (watt-hours) in finer units.	\bigcirc	\bigcirc	"Standard"
Communication mode	Select the communication protocol: F-MPC-Net or MODBUS RTU.	\bigcirc	-	F-MPC-Net
Communicaion parameier	Select the communication parameter. (Baud rate: 4.8 to 38.4 kbps; Bit length: 7 to 8 bits; Parity: odd/even/none)	\bigcirc	-	19.2 kbps, 7-bit, odd
Clock time	Set the time of the internal clock that is used to determine the timing of SD card recording. Set the year, month, day, hour, and minutes. (The clock time is not set at the factory, so please set it using the indicator and setter.)	-	\bigcirc	-
Fixed interval recording time	Set when you want to record at intervals shorter than 1 hour. You can set 1, 2, 5, 6, 10, 15, 30 [minutes], or "Do not record"	-	\bigcirc	Do not record

In the following cases, it is necessary to change the factory defaults by using the indicator and setter.
When using a [UMO5-AR3] 5 A rated CT; When using an external VT; When changing the MODBUS RTU
When using a [UM05-AC3] 5 A rated CT; When using an external VT; When setting the clock; When you want to record at intervals shorter than 1 hour
*The clock time is not set at the factory. If the clock is not set, recording data will be displayed as 2000-01-01 0:00 when first powering on.

Energy Contril Equipment

Power Monitoring Equipment Power monitoring unit F-MPC04E (UM05)

Specifications

- General specifications(common to UM05-AR3 and UM05-AC3)

Item		Specifications
Rating	Voltage	100 to 240 V AC (permissible operational voltage: 85 to 264 V AC) [Measurements and control power: shared input terminal; Control power: between U-V terminals]
	Frequency	$50 / 60 \mathrm{~Hz}$ (permissible range: 47.5 to 63 Hz)
	Current (CT primary/ secondary)	AC5A/7.34mA,AC50A/73.4mA,AC100A/33.3mA, AC200A/66.7mA,AC400A/133.3mA,AC800A/133.3mA
Power supply	Load VA	6 VA
	Inrush current	$\begin{aligned} & 30 \mathrm{~A}, 3 \mathrm{~ms}(240 \mathrm{~V}) \\ & 15 \mathrm{~A}, 3 \mathrm{~ms}(100 \mathrm{~V}) \\ & \hline \end{aligned}$
Insulation resistance		$10 \mathrm{M} \Omega$ or higher between electrical circuits and ground (housing/DIN rail) $10 \mathrm{M} \Omega$ or higher between I/O circuits and ground $5 \mathrm{M} \Omega$ or higher between electric circuits and I / O circuits
Vibration resistance performance		10 to 58 Hz : One-way amplitude 0.075 mm , 58 to 150 Hz : Constant acceleration $10 \mathrm{~m} / \mathrm{s}^{2}$ 8 minutes $\times 10$ cycles in each $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ direction (When equipped with a non-slip clasp)
Shock resistance		Half-sine wave $294 \mathrm{~m} / \mathrm{s}^{2}, 11 \mathrm{~ms}$, 3 times in each $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ direction (When equipped with a non-slip clasp)
Withstan	nd voltage	2000 V AC for 1 minute between terminals and ground (housing/ DIN rail) 2000 V AC for 1 minute between electric circuits and I/O circuits

Item Noise resistance judgment criterion B		Specifications
		Damping oscillation wave: 1 to 1.5 MHz ; Peak voltage: 2.5 to 3 kV damping oscillation waveform (2 s)
Noise resistance judgment criterion B		Square wave: Continuous application of $1 \mathrm{~ns} \times 1 \mu \mathrm{~s} 1.5 \mathrm{kV}$ square wave noise for 10 minutes
		Radiation electromagnetic field: $20 \mathrm{~V} / \mathrm{m}$ *1
		Electrostatic Gap discharge: 8 kV ; Contact discharge (housing): 4 kV
		Burst Control power: 2 kV ; CT input (clamp): 2 kV ; I/O (clamp): 1 kV
Overload capacity	Current circuit	1.1 times maximum scale value (1.25 times rated current) for 2 hours
	Voltage circuit	1.1 times maximum scale value for 2 hours
Operating ambient temperature		-10 to $55^{\circ} \mathrm{C}$
Storage temperature		-20 to $70^{\circ} \mathrm{C}$
Relative humidity		20 to 90\% RH (no dew condensation shall be observed)
Usage atmosphere		No corrosive gas or excessive dust shall be observed
Permissible instantaneous power failure time		20 ms (communication and measurement are interrupted)
Mass		$[$ Measurement unit] UM05-AR3 approx. 120 g (excluding CT) UMdicator and setter] Approx. 70 g (excluding connection cables)

[UM05-AR3]

- Measurement specifications
(1) Present value indication

Item		Measurement range	Accuracy * 1
Voltage	3-phase line voltage *2 (Vuv, Vvw, Vwu)	85 to 264V	$\begin{aligned} & \text { Vuv,Vvw: } \\ & \pm 1.0 \% \text { FS } \\ & \text { Vwu: } \pm 2.5 \% \text { FS } \end{aligned}$
Current	3-phase current $(\mathrm{Ir}, \mathrm{Is}, \mathrm{It})$ *2	0.4 to 125% of rating (50 A CT: 0.4 to 100\%, 100 A CT: 0.4 to 120%)	$\begin{aligned} & \text { Ir, It: } \\ & \pm 1.0 \% \text { FS } \\ & \text { Is: } \pm 2.5 \% \text { FS } \\ & \hline \end{aligned}$
Active power *3	Reverse power flow is negative	According to current and voltage measurement range (Current \times voltage $\times \sqrt{ } 3$)	$\pm 1.0 \%$ FS
Reactive power *3	(Reactive power measurement method)	Same as above	$\pm 1.5 \%$ FS
Active electric energy *3	Forward active electric energy	Indicator: 6 digits F-MPC-Net communication: 4 digits MODBUS communication: 9 digits	Equivalent to JIS regular grade 2.0% at power factor of 1.0 and rated current between 5 and 120\% 2.5% at power factor of 0.5 and rated current between 10 and 120%
	Reverse power flow active electric energy		
Power factor	(Reactive power measurement method)	0 to ± 1.000	$\begin{aligned} & \pm 3.0 \% \text { FS } \\ & \text { (Conversion by } 90^{\circ} \text { phase angle) } \end{aligned}$

*1 The accuracy performance excludes external CT and VT tolerance.
*2 Measurement is made after automatically determining 3-phase 3-wire, single-phase 3-wire, and single-phase 2-wire types. For single-phase 2-wire types, Vvw, Vwu, Is, and It are zero.
*3 Active power, reactive power, and active electric energy are measured at voltage: 85 to 264 V and current: 0.4% to 125%.
(2) Period measurement values
$\left.\begin{array}{l|l|l|l|l|l}\hline \text { Item } & & \text { Indicions } & \text { Cammicimin } & \text { Precision } & \text { Remarks } \\ \hline \text { Voltage } & \begin{array}{l}\text { Period voltage max. value (Vuv, Vvw) } \\ \text { Period voltage avg. value (Vuv, Vvw) } \\ \text { Period voltage min. value (Vuv, Vvw) }\end{array} & \times & & & \begin{array}{l} \pm 2.5 \% \text { FS } \\ \text { (Excludes VT tolerance) }\end{array}\end{array} \begin{array}{l}\text { The maximum and minimum values are } \\ \text { the commercial-frequency, single-cycle } \\ \text { RMS maximum and minimum values. }\end{array}\right\}$

- Communication specifications

Use RS-485 communication by selecting either the F-MPC-Net communication or Modbus RTU communication protocol.

		Specifications	
		F-MPC-Net	Modbus RTU
	andard	EIA-485	
	nsmission method	Half duplex two-wire type	
	a exchange method	1: N (Power monitoring unit) Polling/selecting	
	chronization method	Start-stop synchronization method	
	nsmission distance	1000 m (total length)	
	mber of connection ts	Maximum 64 units *1 One system (however, the master device is included in the 64 units)	
	nsmission speed	4800/9600/19200/38400 bps (selectable)	
	ation address ting	1 to 99 *2 (Modbus RTU communication also supports 1 to 99)	
	nnection method	Terminal block	
	-485 terminal nes	DXA,DXB	Connect by reading DXA as D1 (+) and DXB as D0 (-).
	nsmission aracter	ASCII code	Binary
	Start bit	1 bit (fixed)	1 bit (fixed)
	Data length	7 bits / 8 bits (select)	8 bit (fixed)
	Parity bit	None / Even number / Odd number (select)	None / Even number / Odd number (select)
	Stop bit	1 bit (fixed)	No parity: 2 bits (fixed) Other: 1 bit (fixed)
	BCC	Even number horizontal parity CRC-16	
The factory default at time of shipping is the F-MPC-Net protocol with communication speed:19200 bps; data length: 7 bits; parity: odd. (To change the factory default communication settings, you need to use the [UM05X-S] dedicated indicator.)			
*1 When connecting units that support 32 connected units, two units are recognized as one unit and the maximum number of connections will be lower.			
*2 The communication code is set using the rotary switch.Furthermore, you can also make use of power monitoring unit addresses 1 to 99 for Modbus RTU. The communication will be invalid when the communication code is set at " 00 ."			

[UM05-AC3]

- Measurement specifications

Item		Measurement range	Accuracy * 1
Voltage	3-phase line voltage *2 (Vuv, Vvw, Vwu)	85 to 264V	Vuv,Vvw: $\pm 1.0 \%$ FS Vwu: $\pm 2.5 \%$ FS
Current	3-phase current (Ir, Is, It) *2	0.4 to 125% of rating (50 A CT: 0.4 to 100\%, $100 \mathrm{ACT}: 0.4$ to 120%)	$\begin{aligned} & \text { Ir, It: } \\ & \pm 1.0 \% \text { FS } \\ & \text { Is: } \pm 2.5 \% \text { FS } \end{aligned}$
Active power ${ }^{2}$	Reverse power flow is negative	According to current and voltage measurement range (Current \times voltage $\times \sqrt{ } 3$)	$\pm 1.0 \%$ FS
Reactive power *2	(Reactive power measurement method)	Same as above	$\pm 1.5 \%$ FS
Active electric energy *2	Forward active electric energy	Indicator: 6 digits	Equivalent to JIS regular grade 2.0% at power factor of 1.0 and rated
	Reverse power flow active electric energy		current between 5 and 120\% 2.5% at power factor of 0.5 and rated current between 10 and 120%
Power factor	(Reactive power measurement method)	0 to ± 1.000	$\pm 3.0 \%$ FS (Conversion by 90° phase angle)

[^5]
- SD memory card

Two types of data can be recorded on the SD memory card: one-hour interval and setting interval data.

	cord measurement values	Recording interval	Remarks
	Max. value: Ir, It, Vuv, Vvw Avg. value: Ir, It, Vuv, Vvw Min. value: Ir, It, Vuv, Vvw Period value [difference]: electric energy (watt-hours) Reverse power flow electric energy (watt-hours)	1-hour (fixed)	Saves in single-day units in CSV file format. (1 month of data is about 1 MB) The internal memory can retain 35 days of data when not using a memory card. *1, *2
	Max. value: Ir, It, Vuv, Vvw Avg. value: Ir, Is, It, Vuv, Vvw, Vwu, kW, kvar Min. value: Ir, It, Vuv, Vvw Period value [difference]: electric energy (watt-hours), reverse power flow electric energy (watt-hours) Instantaneous value: $\cos \phi$	Select 1, 2, 5, 6, 10, 15, 20, 30 (minutes), or "Do not record". (The factory default is "Do not record")	Saves in single-day units in CSV file format. (1 month of data is a max. of 9 MB) Records only when mounted with a memory card. You need to use the dedicated indicator to change the setting interval. An ERR LED will flash if you attempt to set the fixed recording interval without first mounting a memory card. *1, *2
(Note 1) An SD card is not included. Customers should purchase an SD or SDHC card with a capacity of 32 GB or smaller. (Note 2) The recording interval is based on the time of the internal clock. To adjust the clock time, a separately sold indicator is required.			
*1 The maximum and minimum values are determined from the measurement values of each cycle of the commercial frequency $(50 / 60 \mathrm{~Hz})$. *2 When accessing the SD card, do not dismount and remount it or turn off the control power.			

- UM05-AC3

Features

You can implement on/off state monitoring and capture pulse signal measurements, alarm relay output, and flow meter data for energy monitoring systems that utilize the F-MPC-Net communication protocol.

- The DI/DO unit can input on-off signals, count accumulated pulse values, and control the on-off state of the relay output.
- 2-wire RS-485 communication enables the unit to transmit the input state to the host and control relay output based on on-off directives from the host.

Models and Types

Part name	Specifications	Type
DI/DO unit	6 inputs (contact or transistor input) 4 relay outputs $(250 \mathrm{~V} \mathrm{AC} 1 \mathrm{~A})$,	UM11-D0604

■ Specifications

- General specifications

Item		Specifications
Control power	Rating	100 to 240 V AC (permissible range: 85 to 264 V AC) $50 / 60 \mathrm{~Hz}$ (permissible range: 47 to 63 Hz)
	Consumer VA	Max. 8.5VA
	Inrush current	20 A or less
Ambient temperature		-10 to $55^{\circ} \mathrm{C}$
Storage temperature		-20 to $70^{\circ} \mathrm{C}$
Relative humidity		20 to 90% RH (no condensation)
Usage atmosphere		No corrosive gas or excessive dust.
Protective structure		IP20
Insulation resistance		$10 \mathrm{M} \Omega$ or higher between control power terminals and other terminals
Power frequency withstand voltage		$2,000 \mathrm{~V} \mathrm{AC} \mathrm{for} 1$ minute between control power terminals and other terminals
Noise resistance		1 to 1.5 MHz ; Peak voltage: 2.5 to 3 kV damping oscillation waveform (2 s) Continuous application of $1 \mathrm{~ns} \times 1 \mu \mathrm{~s} 1.5 \mathrm{kV}$ square wave noise for 10 minutes Burst Control power: 2 kV ; Communication line: 1 kV Surge: Control power: 2 kV ; Communication line: 1 kV
Electrostatic noise immunity		Gap discharge: 8 kV , contact discharge (housing): 4 kV
Shock resistance		$294 \mathrm{~m} / \mathrm{s}^{2}$ [30G] 3-direction 3-times each (Ensure no 2-way malfunction at $147 \mathrm{~m} / \mathrm{s} 2$ [15G])
Vibration resistance		19.6 m/s2, 16.7 Hz, 30 minutes in each $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ direction
Permissible instantaneous power failure time		20 ms (continuous operation)
Mounting method		Screw mounting, IEC 35 mm rail mounting
Mass [g]		250 g

- Input/output specification

(1) DI

It has 6 DI points and can read on-off states and count pulses. Among the 6 points, 2 points can count pulse widths of 10 ms or higher, and the other 4 points can count pulse widths of 50 ms or higher.
Transmits on-off states via communication. Furthermore, the number of counted pulses can be transmitted via communication.

Item	Specifications	Remarks
Digital input type	Contact or transistor input	With service power voltage constantly applied
Minimum input signal width	10 ms in1 and in2 $50 \mathrm{~ms}:$ in3 to in6	For pulse input, ON and OFF periods must be greater than or equal to the minimum input signal width.
Operating time measurement	Time tolerance $\pm 1.0 \%$ (Min. $\pm 1 \mathrm{~s}$)	Integrates total ON time in seconds
ON current	ON at 4 mA or higher	When ON, a current of approx. 5 mA is applied.
OFF current	OFF when less than 1 mA	The IN1 and IN2 input terminals have 2 terminals per point. IN3 and IN4 are common. IN5 and IN6 are likewise common. The GND terminal is commonly connected internally.
Internal circuit	Input circuit per point	

Energy Contril Equipment
Power Monitoring Equipment F-MPC I/O unit

Circuit configuration diagram

(2) DO

It has 4 DO points and can implement on-off output control via communication.

Item	Specifications	Remarks
Digital output type	Relay output (NO contact)	Card relay RB 105 equivalent
Continuous rated thermal current	250 V AC, 1 A (continuous rated thermal current)	
Max. operating cycles per hour	1,800 cycles/hour	
Make/break durability	600,000 cycles [220 V AC, 1 A resistive load] 200,000 cycles [220 V AC, 1 A inductive load] 900,000 cycles [110 V AC, 1 A resistive load] 300,000 cycles [110 V AC, 1 A inductive load] 600,000 cycles [24 V DC, 1 A resistive load] 120,000 cycles [$24 \mathrm{~V} \mathrm{DC}$,1 A inductive load]	1,800 operating cycles per hour, current carrying factor of 40% Under inductive load, time constant $\mathrm{L} / \mathrm{R}=15 \mathrm{~ms}$
Internal circuit	Output terminal	The output terminals have 2 terminals per point.

Communication specification

Item		Specifications	
		F-MPC-Net	Modbus RTU
Standard		EIA-485	
Transmission method		Half duplex two-wire type	
Data exchange method		1:N (main unit) polling/selecting	
Transmission distance		1,000 m (total length)	
Number of connection units		Maximum 64 units/1 system (however, the host device is included in the 64 units) (Note 1)	
Transmission speed		4800/9600/19200/38400 bps (selectable)	-
Station address setting		1 to 99 (Note 2)	8
RS485 terminal names		DXA,DXB	Connect by reading DXA as D1 (+) and DXB as D0 (-).
Transmission character		ASCII code	Binary
Data type	Start bit	1 bit (fixed)	1 bit (fixed)
	Data length	7 bits / 8 bits (select)	8 bit (fixed)
	Parity bit	None / Even number / Odd number (select)	None / Even number / Odd number (select)
	Stop-bit	1 bit (fixed)	No parity: 2 bits (fixed) Others: 1 bit (fixed)
	BCC	Even number horizontal parity	CRC-16
(Note 2) The communication code is set using the rotary switch. Furthermore, you can also make use of main unit addresses 1 to 99 for Modbus RTU. The communication will be invalid when the communication code is set at " 00 "			

■ Dimensions, mm

ZCT Equipped Breakers

■ Features

By combining the breaker with a centralized power distribution monitoring unit (type: UM04) or single-circuit power monitoring unit with leakage current meter (type: UM03-ARA3G), you can easily construct a leakage current monitoring and cutoff system.

Specifications

- Standard accessories

(Note 1) Comes standard with an auxiliary alarm switch and shunt trip device. Terminal block type only. There are no lead wire types.
(Note 2) Only units with a rated current of 125 A are excluded.
(Note 3) Specify a voltage rating of either 100-120 V AC/100-110 V DC or 200-240V AC/200-220 V DC.
(Note 4) Can be used at a voltage rating of $100-240 \mathrm{~V} \mathrm{AC/100-220} \mathrm{~V} \mathrm{DC}$.

■ Dimensions (Front mounting type), mm

<Mounting drilling dimensions>

BW400SAZ,BW400RAZ

<Mounting drilling dimensions>

BW630RAZ

<Surface plate drilling dimensions>

BW800RAZ

<Surface plate drilling dimensions>

- Terminal arrangement diagram

BW125JAZ,BW125RAZ, BW250JAZ,BW250RAZ

BW400SAZ,BW400RAZ, BW630RAZ,BW800RAZ

Zero-phase current transformer

Specifications

Model (low voltage)			Rated current$[\mathrm{A}]$	Hole-through diameter(ϕ)	Hole-through cable			Case color	Mass (approx.) [kg]
		Type			$1 \phi 2 \mathrm{~W}$	$1 \phi 3 W, 3 \phi 3 W$	$3 \phi 4 \mathrm{~W}$		
		RM112-ZCT3005	50	30	IV $14 \mathrm{~mm}^{2}$	IV $8 \mathrm{~mm}^{2}$	IV $8 \mathrm{~mm}^{2}$	Black (phenol)	0.14
		RM112-ZCT3010	100	30	IV $60 \mathrm{~mm}^{2}$	IV $50 \mathrm{~mm}^{2}$	IV $38 \mathrm{~mm}^{2}$	Black (phenol)	0.14
		RM112-ZCT4220	200	42	IV $100 \mathrm{~mm}^{2}$	IV $80 \mathrm{~mm}^{2}$	IV $60 \mathrm{~mm}^{2}$	Black (phenol)	0.22
		RM112-ZCT5830	300	58	IV $125 \mathrm{~mm}^{2}$	IV $100 \mathrm{~mm}^{2}$	IV $80 \mathrm{~mm}^{2}$	Black (phenol)	0.42
		RM112-ZCT7040	400	70	IV $400 \mathrm{~mm}^{2}$	IV $325 \mathrm{~mm}^{2}$	IV $250 \mathrm{~mm}^{2}$	Black (phenol)	0.54
		RM112-ZCT7060	600	70	IV $400 \mathrm{~mm}^{2}$	IV $325 \mathrm{~mm}^{2}$	IV $250 \mathrm{~mm}^{2}$	Black (phenol)	0.54
		RM112-ZCT9060	600	90	IV 500 mm	IV 500 mm	IV 500 mm	Black (epoxy)	2.0
		RM112-ZCT9080	800	90	IV $500 \mathrm{~mm}^{2}$	IV $500 \mathrm{~mm}^{2}$	IV $500 \mathrm{~mm}^{2}$	Black (epoxy)	2.0
		EW-Z115	1200	115	-	-	-	Gray (epoxy)	4.8
		EW-Z160	2000	160	-	-	-	Gray (epoxy)	10
		EW-Z250	3000	250	$-$	-	-	Gray (epoxy)	28.5
	$\begin{aligned} & 0 \\ & \underline{\#} \\ & \text { च } \\ & \hline 0 \end{aligned}$	EW-ZD30	100	30	IV $60 \mathrm{~mm}^{2}$	IV $50 \mathrm{~mm}^{2}$	IV $38 \mathrm{~mm}^{2}$	Black (phenol)	0.55
		EW-ZD45	200	45	IV $125 \mathrm{~mm}^{2}$	IV $100 \mathrm{~mm}^{2}$	IV $80 \mathrm{~mm}^{2}$	Black (phenol)	0.89
		EW-ZD65	400	65	IV $325 \mathrm{~mm}^{2}$	IV $250 \mathrm{~mm}^{2}$	IV $200 \mathrm{~mm}^{2}$	Black (phenol)	1.15
Model (low voltage)			Rated current [A]	Hole-through diameter(ϕ)	Hole-through conductor			Case color	Mass (approx.)
		Type			3 ¢ 3W	3ϕ			[kg]
	$\begin{aligned} & \omega \\ & \stackrel{\omega}{\circ} \\ & \stackrel{\circ}{D} \\ & \hline \end{aligned}$	EW-Z3B40	400	70	$5 \times 40 \mathrm{~mm}$	-		Black (phenol)	2.8
		EW-Z3B50	500	70	$6 \times 40 \mathrm{~mm}$	-		Black (phenol)	3.1
		EW-Z3B60	600	90	$6 \times 50 \mathrm{~mm}$			Black (epoxy)	7.0
		EW-Z3B80	800	90	$8 \times 50 \mathrm{~mm}$			Black (epoxy)	8.0
		EW-Z3B100	1000	90	$12 \times 50 \mathrm{~mm}$			Black (epoxy)	11.0
		EW-Z3B120	1200	115	$10 \times 75 \mathrm{~mm}$			Gray (epoxy)	15.2
		EW-Z3B160	1600	160	$12 \times 100 \mathrm{~mm}$			Gray (epoxy)	30.5
		EW-Z3B200	2000	160	$6 \times 100 \mathrm{~mm} \times$			Gray (epoxy)	30.5
		EW-Z3B300	3000	250	$8 \times 150 \mathrm{~mm} \times$			Gray (epoxy)	68.6
	$\begin{aligned} & \stackrel{A}{\mathrm{O}} \\ & \frac{\mathrm{C}}{\mathrm{D}} \end{aligned}$	EW-Z4B40	400	90	-			Black (epoxy)	6.0
		EW-Z4B50	500	90	-			Black (epoxy)	6.5
		EW-Z4B60	600	90	-			Black (epoxy)	9.0
		EW-Z4B80	800	90				Black (epoxy)	11.0
		EW-Z4B100	1000	115	-			Gray (epoxy)	15.5
		EW-Z4B120	1200	115	-			Gray (epoxy)	24.9
		EW-Z4B160	1600	160	-		mm	Gray (epoxy)	36.4
		EW-Z4B200	2000	160	- \square^{-}	$6 \times$	$m \times 2$	Gray (epoxy)	36.4
		EW-Z4B300	3000	250	-	$8 \times$	$m \times 2$	Gray (epoxy)	80.3

[^6]
- Dimensions, mm

RM112-ZCT3005, ZCT3010, ZCT5830

RM112-ZCT4220

EW-Z115, 160, 250

Dimensions [mm]		A	B	C	D	E	F	G	H
Type	J								
EW-Z115	168	220	232	$\phi 115$	56	112	98	120	7
EW-Z160	170	270	275	$\phi 160$	70	137	110	128	10
EW-Z250	320	400	403	$\phi 250$	120	203	160	194	13

EW-ZD45, ZD65

RM112-ZCT7040, ZCT7060

Terminal cover

RM112-ZCT9060
RM112-ZCT9080

EW-Z3B40,Z3B50

[^7]Energy Contril Equipment

F-MPC04P (type: UM02A), F-MPC04S (type: UM03), F-MPC04E (type: UM05) combination CT

- Features

- A split-type CT can be mounted without disconnecting existing cables, making it ideal for measuring and monitoring the electric energy of existing circuits.
- We also offer a hole-through type CT as a low-cost version that can be used for measuring and monitoring the electric energy of new circuits.

■ Models and Types

- F-MPC04P (type: UM02A), single-circuit F-MPC04S (type: UM03), F-MPC04E (type: UM05) combination CT

A combination CT is a dedicated CT. General-purpose CT (secondary rated current 5 A or 1 A) cannot be directly connected. Otherwise, damage may occur.

Models	Small split type		Square split type				Round through type	
	Fig. 1	Fig. 1	Fig. 2	Fig. 3	Fig. 4	Fig. 5	Fig. 6	
Type	CC2D81-0057	CC2D81-0506	CC2D71-1004	CC2D65-2008	CC2D54-4009	CC2D52-8009	CC2B65-2008	CC2B54-4009
Rated primary current	5A	50A	$\begin{aligned} & \hline \text { 100A } \\ & \text { (only F-MPCOAS not applicable) } \end{aligned}$	200A	400A	800A (only F.MPCO4S not appicade)	200A	400A
Linearity output limit	According to the main unit measurement range							
Rated secondary current	7.34 mA	73.4 mA	33.33 mA	66.67 mA	133.33 mA		66.67 mA	133.33 mA
Through hole diameter	¢ 10		¢ 16	$\phi 24$	¢ 36	$\phi 60$	¢ 24	¢ 36
Rated frequency	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$							
Excessive electric current resistance amount	$10 \mathrm{In} / \mathrm{continuous}$	$10 \mathrm{ln} / 1 \mathrm{sec}$.	$40 \mathrm{ln} / 1 \mathrm{sec}$.			+	1.2 In/continuous	$40 \mathrm{ln} / 1 \mathrm{sec}$.
Rate error	$\pm 1 \% / \mathrm{ln} \pm 1.5 \% / 0.2 \mathrm{ln}$					$\pm 1 \% / \mathrm{ln} \pm 1.5 \% / 0.3 \mathrm{ln}$	$\pm 1 \% / \mathrm{ln} \pm 1.5 \% / 0.2 \mathrm{ln}$	
Phase difference	$150 \mathrm{~min} . \pm 90 \mathrm{~min} . / \mathrm{ln}, 180 \mathrm{~min} . \pm 120 \mathrm{~min} . / 0.2 \mathrm{~m}$		$1 \pm 1 \% / \mathrm{ln} 1 \pm 1.5 \%$ \% 2 ln	$\pm 60 \mathrm{~min} . / \mathrm{ln} \quad \pm 90 \mathrm{~min} . / 0.2 \mathrm{ln}$				
Rated load	$\begin{array}{\|l} 0.2693 \mathrm{mVA} \\ \text { (Load resistance } 5 \Omega \text {) } \\ \hline \end{array}$	$\begin{array}{\|l} 26.93 \mathrm{mVA} \\ \text { (Load resistance } 5 \Omega \text {) } \end{array}$	$\begin{array}{\|l} 11.1 \mathrm{mVA} \\ \text { (Load resistance } 10 \Omega \text {) } \end{array}$	44.4 mVA (Load resistance 10Ω)	$\begin{aligned} & 0.18 \mathrm{VA} \\ & \text { (Load resistance } 10 \Omega \text {) } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 0.177 VA } \\ (\text { Load resistance } 10 \Omega) \end{array}$	44.4 mVA (Load resistance 10Ω or less)	$\begin{array}{\|l} 177.8 \mathrm{mVA} \\ \text { (Load resistance } 10 \text { or less) } \end{array}$
Insulation resistance	DC500V/100M Ω or more (Between the core and the output lead line)						DC500V/100M, or more (Between the through hole and the output lead line)	DC500V/100M, or more (Between the through hole and the output terminal)
Dielectric strength	2000 V AC/1 min. (Between the core and the output lead line)			8			2500 V AC/1 min. (Between the through hole and the output lead line)	2500 V AC/1 min. (Between the through hole and the output terminal)
Output protective device	7.5 Vp built-in clamping diode			3 Vp built-in clamping diode			-	
Usage ambient conditions	-20 to $75^{\circ} \mathrm{C} 80 \% \mathrm{RH}$ or less No condensation							
Method for fixing divided portion	Clamp						-	
Main body mounting method	Hanger			Heat-resistance vinyl electric wire $0.75 \mathrm{~mm}^{2}$ (AWG18), $1,000 \mathrm{~mm}$			-	
Connection	Heat-resistance vinyl electric wire $0.3 \mathrm{~mm}^{2}$ (AWG22) $\times 1,000 \mathrm{~mm}$					Heatressistance vinyl lectric wire AWG18, $1,000 \mathrm{~mm}$	Heatresistance vinyl lectric wire $0.3 \mathrm{~mm}^{2} \times 1,000 \mathrm{~mm}$	M3 terminal block
Mass	about 45 g		about 80 g	about 200 g	about 300 g	about 500 g	about 60 g	about 180 g

[^8]
- Dimensions, mm

Please also refer to the next page.

Fig. 1
CC2D81

Fig. 2
CC2D71

Fig. 3
CC2D65

Fig. 4
CC2D54, CC2D74

F-MPC04 (type: UM04) combination CT

Models and Types

- F-MPC04 (type: UM04) combination CT

A dedicated combination CT box (type: UM04X-1) is required when using in combination with the F-MPC04 (UM04). Please note that the type of CT box will vary depending on the secondary current of the combination CT being used.

Models	Square split type			Round split type	
	Fig. 4	Fig. 4	Fig. 4	Fig. 8	Fig. 8
Type	CC2D74-1001	CC2D74-2001	CC2D74-4001	CC2C76-8001	CC2C76-12X1
Rated primary current	100A	200A	400A	800A	1,200A
Linearity output limit	According to the main unit measurement range				
Rated secondary current	1 A				
Through hole diameter	¢ 36			$\phi 60$	
Rated frequency	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$				
Excessive electric current resistance amount	$1.0 \mathrm{ln} /$ continuous $40 \mathrm{ln} / 1 \mathrm{sec}$.				
Rate error	$\pm 1 \% / \mathrm{ln} \pm 1.5 \% / 0.2 \mathrm{ln}$			$\pm 1 \% / \mathrm{ln} \pm 1.5 \% / 0.2 \mathrm{ln} \pm 3 \% / 0.05 \mathrm{ln}$	
Phase difference	90 ± 90 minutes/In	60 ± 60 minutes/ln	± 80 minutes/ln	$\pm 80 \mathrm{~min} . / \mathrm{In}, \pm 100$	
Rated load	0.5 VA (Load resistance 0.5Ω)				
Insulation resistance	$500 \mathrm{~V} \mathrm{DC} / 100 \mathrm{M} \Omega$ or higher (Between the core and the output lead line)			DC500V/100M Ω or more (Between the through hole and the output lead line)	
Dielectric strength	2000 V AC/1 min. (Between the core and the output lead line)			2500 V AC/1 min. (Between the through hole and the output lead line)	
Output protection	$\pm 1.4 \mathrm{Vp}$ built-in clamping diode				
Usage ambient conditions	-20 to $75^{\circ} \mathrm{C} 80 \% \mathrm{RH}$ or less No condensation				
Method for fixing a divided portion	Clamp				
Main body mounting method	Hanger				
Connection	Heat-resistance vinyl electric wire $0.75 \mathrm{~mm}^{2}($ AWG18) $\times 1,000 \mathrm{~mm}$			VCTF$0.75 \mathrm{~mm}^{2} \times 1,000 \mathrm{~mm} 2$-core	
Mass	300 g			500 g	
Combination CT box	UM04X-1		8	UM04X-1	

*UM04X-5 is the CT box to use when combining with a general-purpose CT (10 to 7500 A/5 A).

Dimensions , mm

Fig. 5
CC2D52

Fig. 6
CC2B65

Fig. 7
Model CC2B54

Fig. 8
CC2C76- $\square \square \square \square$

Terminal relay RS16

Description

The RS16 relay, in combination with F-MPC04 (type: UM01) power monitoring unit, outputs the current prealarm signal and leakage current pre alarm signal, and the signal to trip circuit breakers.

■ Specifications

Type		RS16-DE04H
No. of connectable circuits		5
Operate time		10 ms or less
Release time		10 ms or less
Vibration	Malfunctions durability	$10-55 \mathrm{~Hz} 1 \mathrm{~mm}$ double amplitude (0.61N max.)
	Mechanical durability	$10-55 \mathrm{~Hz} 1 \mathrm{~mm}$ double amplitude (0.61N max.) 3 times in each X, Y, Z direction, total 18 times
Shock	Malfunctions durability	$100 \mathrm{~m} / \mathrm{s}^{2}$
	Mechanical durability	$200 \mathrm{~m} / \mathrm{s}^{2}, 2$ hours in each X, Y, Z direction, total 6 hours
Operating ambient temperature		-25 to $55^{\circ} \mathrm{C}$ (no icing or no condensation)
Operating ambient humidity		35 to 85\%RH
Terminal screw size		M3
Tightening torque		$0.5-0.7 \mathrm{~N} \cdot \mathrm{~m}$
Mounting		Rail mounting (screw mounting also available)
Applicable crimp terminal		R1.25-3 (Max 6mm)
Applicable wire size		Max. 1.4mm dia.
LED color	Operation indication	Red
	Power source indication	Green
Coil surge suppressor		Diode
Max. No. of rely insertion		50
Insulation resistance (initial)		100M ${ }^{\text {a }}$ (500V DC megger)
Dielectric strength	Between contact and coil	2000V AC, 1 minute
	Between same polarity contacts	1000 V AC, 1 minute
	Between reverse polarity contacts	2000V AC, 1 minute
	between heteropolar coils	500V AC, 1 minute
Mass		200 g

Dimensions, mm

50 (Mounting rail: height 15) (42.5) (Mounting rail: height 7.5)

- Connector cable

For connecting CT-BOX, Terminal relay RS16, and Connector terminal block AU-CW.

1m long	AUX014-201
2m long	AUX014-202
3m long	AUX014-203

■ Terminal arrangement

(0) : 10 trip (No. 1 or 6)
(1): Io trip (No. 2 or 7)
(2): Io trip (No .3 or 8)
(3) : Io trip (No. 4 or 9)
(4) : Io trip (No. 5 or 0)
(5) :Io prealarm (No. 1 or 6)
(6) :Io prealarm (No. 2 or 7)
(7) :Io prealarm (No. 3 or 8)
(8) :Io prealarm (No. 4 or 9)
(9) :Io prealarm (No. 5 or 0)
(A):I prealarm (No. 1 or 6)
(B) :I prealarm (No .2 or 7)
(C):I prealarm (No. 3 or 8)
(D) : I prealarm (No .4 or 9)
(E) :I prealarm (No. 5 or 0)
(F):Unused

3-phase 4-wire
lo trip (No. 1 or 4)
lo trip (No. 2 or 5)
lo trip (No. 3 or 6)
Unused
Unused
lo prealarm (No. 1 or 4)
lo prealarm (No. 2 or 5)
lo prealarm (No. 3 or 6)
Unused
Unused
I prealarm (No. 1 or 4)
I prealarm (No. 2 or 5)
I prealarm (No. 3 or 6)
Unused
Unused
Unused

Panel drilling

Power Monitoring Equipment

 AU-CW21B1
Connector terminal-block, AU-CW21B1

Description

The AU-CW21B connector terminal-block, in combination with the F-MPC04 (type: UM04) power monitoring unit, can output a kWh pulse.

Ordering information
 Specify the following:
 1. Type number

■ Specifications

Type	Front mounting
AU-CW21B1-04	
Insulation voltage	$60 \mathrm{~V} \mathrm{AC/DC}$
Continuous current	$\left.1 \mathrm{~A} \mathrm{(at} \mathrm{40}{ }^{\circ} \mathrm{C}\right)$
No. of terminals	21
No. of connectors	20
Terminal screw size	M 3.5
Insulation resistance	$100 \mathrm{M} \Omega$ or more
Dielectric strength	500 V 1 min
Allowable ambient temperature	-5 to $+40{ }^{\circ} \mathrm{C}$
Allowable ambient humidity	45 to 85\%RH
Flame resistance	UL94-V1
Connection cable	Multi-core cable
	Flat cable

Note: * Specify cable length by replacing \square with $1: 1 \mathrm{~m}, 2$: 2 m , or $3: 3 \mathrm{~m}$.

Terminal arrangement and output

		Pulse output circuit No.	Remarks
Terminal No.	23	Circuit 1 pulse output	Circuit 1 to 6 pulse outputs are valid in 3-phase 4-wire system.
	22	Circuit 2 pulse output	
	21	Circuit 3 pulse output	
	20	Circuit 4 pulse output	
	19	Circuit 5 pulse output	
	18	Circuit 6 pulse output	
	17	Circuit 7 pulse output	
	16	Circuit 8 pulse output	
	10	Circuit 9 pulse output	
	9	Circuit 10 pulse output	
	15, 2	Common (-)	

Dimensions, mm

[^0]: ${ }^{*} 2$ with SI, VI, LT, and El characteristics

[^1]: ${ }^{* 1}$: The operation guaranteed temperature is a temperature at which operation is guaranteed within two times of the guaranteed accuracy value at JEC characteristics guaranteed temperature, or within the accuracy of influence of JIS temperature.

[^2]: Note *1: FMPC 04 (UM04) is connected to CT via CT-BOX. For combination of F-MPC04 (UM04), CT-BOX and CT, See page D1-231 and D1-255; "Applicable CT."

[^3]: Note: *1 Select either the current pre-alarm output or the power alarm output through setup.

[^4]: Accurate measurement even at low loads JIS regular grade accuracy that ensures accurate measurement of electric energy (watt-hours) even at low loads

[^5]: 1 The accuracy performance excludes external CT and VT tolerance.
 2 Measurement is made after automatically determining 3-phase 3-wire, single-phase 3-wire, and single-phase 2-wire types. For single-phase 2-wire types, Vvw, Vwu, Is, and It are zero.
 3 Active power, reactive power, and active electric energy are measured at voltage: 85 to 264 V and current: 0.4% to 125%.

[^6]: *Make sure to twist the ZCT secondary wire (estimated twisting: 1 twist $/ 5 \mathrm{~cm}$) and separate the wire from the power cable

[^7]: *The dimensions in parentheses () correspond to the EW-Z3B50.

[^8]: *1 Type: CC2D81-0057 can be used alone or in combination with the secondary lines of existing general-purpose CT (10 A to $7500 \mathrm{~A} / 5 \mathrm{~A}$). Set the CT primary rated current by selecting from 10 to 7500 A .
 *2 The single-circuit F-MPC04S (type: UM03) is not compatible with CC2D71-1004 and CC2D52-8009.

