EasyLogic™ PM2100 系列

用户手册

NHA2779003-10 2022 年 5 月

法律声明

施耐德电气品牌以及本指南中涉及的施耐德电气及其附属公司的任何商标均是施耐德电气或其附属公司的财产。所有其他品牌均为其各自所有者的商标。本指南及其内容受适用版权法保护,并且仅供参考使用。未经施耐德电气事先书面许可,不得出于任何目的,以任何形式或方式(电子、机械、影印、录制或其他方式)复制或传播本指南的任何部分。

对于将本指南或其内容用作商业用途的行为,施耐德电气未授予任何权利或许可,但以"原样"为基础进行咨询的非独占个人许可除外。

施耐德电气的产品和设备应由合格人员进行安装、操作、保养和维护。

由于标准、规格和设计会不时更改,因此本指南中包含的信息可能会随时更改,恕不另行通知。

在适用法律允许的范围内,对于本资料信息内容中的任何错误或遗漏,或因使用此处 包含的信息而导致或产生的后果,施耐德电气及其附属公司不会承担任何责任或义 务。

安全信息

重要信息

在尝试安装、操作、维修或维护本设备之前,请对照设备仔细阅读这些说明,以使自己熟悉该设备。下列专用信息可能出现在本手册中的任何地方,或出现在设备上,用以警告潜在的危险或提醒注意那些对某过程进行阐述或简化的信息。

这两个符号中的任何一个与"危险"或"警告"安全标签一起使用,指示存在电击危险,若不遵循相关说明,可能会导致人身伤害。

这是安全警示符号。它用来提醒您可能存在的人身伤害危险。请遵守与此符号一起出现的全部安全信息,以避免可能的人身伤害或死亡。

▲▲危险

危险表示存在危险情况,如果不避免,**会导致**死亡或严重人身伤害。

未按说明操作将导致人身伤亡等严重后果。

▲警告

警告表示存在潜在的危险情况,如果不避免,可能导致死亡或严重人身伤害。

▲小心

小心表示存在潜在的危险情况,如果不避免,可能导致轻微或中度人身伤害。

注意

注意用于提醒注意与人身伤害无关的事项。

请注意

电气设备应仅由经过认证的技术人员进行安装、操作、维护和维修。Schneider Electric对因使用本说明而产生的任何后果不承担责任。经过认证的技术人员是指该人员拥有与电气设施的架设、安装和操作相关的技能和知识,并且受过安全培训,能够识别和避免所涉及的危险。

注意事项

FCC

经测试,本设备符合 FCC 规则第 15 部分对 A 类数字设备的限值规定。这些限值旨在合理地防止当设备在商业环境中运行时产生有害干扰。本设备会产生、利用并发射无线射频能量。如果不按说明书安装和使用本设备,有可能对无线电通信产生有害干扰。在住宅区内使用本身可能会产生有害干扰,这种情况下,用户需要自费采取避免干扰的措施。

用户注意:任何未经 Schneider Electric 批准的变更或修改可导致用户无权限操作设备。

本数字设备遵从CAN ICES-3 (A) /NMB-3(A)标准。

目录

安全措施	9
简介	10
· 沙量仪概述	
测量仪功能	
功能汇总	
安装转接器	
测量参数	
电能	
需量	
电能质量	
数据记录	
其它测量	
数据显示和分析工具	
Power Monitoring Expert	
Power SCADA Operation	
测量仪配置	
硬件参考	
PM2100 测量仪型号和配件	
补充说明	
和元说明····································	
国収测量収 LED 指示灯	
测量仪安装	
测量仪接线 直接连接电压限值	
平衡系统注意事项	
串行通讯	
RS-485 接线	
脉冲输出	
显示屏和测量仪设置	
显示概览	
LED 指示灯	
报警电能脉冲指示灯	
心跳/串行通讯指示灯	
按钮功能	
测量仪屏幕菜单	
显示屏屏幕菜单	
设置屏幕菜单	
Demand	
通信设置	
设置密码	
设置日期和时间	
诊断屏幕菜单	
清除屏幕菜单	
锁定/解锁	36
远程测量仪设置	38
概述	38

ION Setup	38
RS-485 端口设置	38
通过 RS-485 设置测量仪	38
使用 ION Setup 配置测量仪	38
查看测量仪数据	39
使用 ION Setup 查看或修改配置数据	
使用软件来查看测量仪数据	
Power Monitoring Expert	
Power SCADA Operation	
Modbus 命令接口	
I/O 模块	42
模拟输入应用	
模拟输出应用	
状态输入 (DI) 应用	
数字输出应用	
继电器输出应用	
IO LED 指示灯	
报警	
报警概述	
报警类型	
单元报警	
可用单元报警	
数字报警	
可用数字报警 标准报警	
超出和低于设定值(标准)报警操作示例	
允许的最大设定值	
可用标准报警	
报警优先级	
报警设置概述	
指示灯报警指示器	
使用 ION Setup 配置报警指示灯	
报警计数器	
测量仪记录	
查看概述	
设置数据日志	
使用 ION Setup 保存数据日志内容	
报警日志	
测量仪复位	
测量仪复位	
测量仪初始化	
使用 ION Setup 执行复位	
测量和计算	
实时读数	63
实时读数 电能测量	63
	63
电能测量	63 63
电能测量基于象限的 VARh	63 63 63

区块间隔需量	64
同步需量	65
热需量	65
电流需量	66
预测需量	66
峰值需量	66
时钟	67
电能质量	68
谐波概述	
总谐波失真 %	
谐波分量计算	
THD% 计算	
显示谐波数据	
维护与升级	60
<u> </u>	
排除 LED 指示灯的故障	
测量仪存储器	
测量仪电池	
查看固件版本、型号和序列号	
固件升级	
技术协助	
·····································	
查看测量仪精度	
精度测试要求	
验证精度测试	
精度验证测试所需的脉冲计算	
精度验证测试所需的总功率计算	
精度验证测试所需的错误百分比计算	
精度验证测试点	
电能脉冲注意事项	
电压互感器和电流互感器注意事项	
计算示例	
典型测试误差源	
功率、电能和功率因数	
功率、电能和功率因数	
电流相角与电压相角的偏移	
真实功率、无功功率和视在功率 (PQS)	
功率因数 (PF)	
功率因数符号约定	
功率因数最小最大值约定	
功率因数寄存器格式	
规格	
//UTD	02

安全措施

任何安装、接线、测试和维修的执行都必须符合所有当地和全国性的电气规范。

44危险

电击、爆炸或弧光的危险

- 请穿戴好人员保护设备 (PPE),并遵守电气操作安全规程。请参考 NFPA 70E、CSA Z462 或其他当地标准。
- 对设备进行操作或者在设备内操作之前,请关闭该装置和将该装置安装在其内的设备的所有电源。
- 务必使用额定电压值正确的电压感应设备,以确认所有电源均已关闭。
- 请遵循相关安装说明书"接线"部分中的指南。
- 除非经检测确认,否则应假定通信和 I/O 接线为危险的带电设备。
- 切勿超过本设备的最大额定值。
- 切勿使电压互感器 (VT) 的次级端子短路。
- 切勿使电流互感器 (CT) 的次级端子开路。
- 请将 CT 的次级电路接地。
- 请勿根据测量仪数据确认电源已关闭。
- 接通设备电源前,重新装回所有装置、门和防护罩。

未按说明操作将导致人身伤亡等严重后果。

注: 有关通信和连接到多台设备的 I/O 接线的更多信息,请参阅 IEC 60950-1。

▲警告

不符合设计意图的操作

• 切勿将本设备用于关键控制或涉及人员、动物、财产或设备保护的装置。

未按说明操作可能导致人身伤亡或设备损坏等严重后果。

▲警告

潜在降低系统的可用性、完整性和保密性

- 更改默认密码以防止对设备设置和信息进行未经授权的访问。
- 在可能的情况下,禁用未使用的端口/服务和默认帐户,以最大程度地减少恶意入侵的途径。
- 将联网设备置于多层网络防护下(例如,防火墙、网段及网络入侵检测和保护)
- 采用网络安全最佳实践(例如:最低权限、分割责任),以帮助防止未经授权的泄露、丢失或修改数据和日志,或中断服务。

未按说明操作可能导致人身伤亡或设备损坏等严重后果。

EasyLogic™ PM2100 系列 简介

简介

测量仪概述

PM2100 系列测量仪为数字测量仪,结构紧凑牢固,可以提供综合 3 相电气仪表和负荷管理设施。

测量仪对满足您电能监控和成本管理应用的苛刻需求具有十分重要的意义。 PM2100 系列产品中的所有测量仪均符合 Class 1 或 Class 0.5S 精度标准,并具有 高质量、安全可靠和经济实惠等特点,且外形紧凑,易于安装。

测量仪功能

PM2100 系列测量仪支持多种功能,部分功能如下所列:

- LED 显示屏幕: LED 显示屏,可以通过三个按钮进行直观的自动引导导航, 具有三行并行数值。测量仪前面板任意一侧的两排 LED 指示显示的参数名 称。
- 电能核算和平衡
- 测量真实功率因数和位移功率因数
- 有功、无功和视在电能读数
- 含有时标的瞬时参数的最小值/最大值。
- 网络安全:测量仪支持通过前面板键禁用 RS-485 端口,以防止未经授权访问。在软件系统中的节点可用性受限的情况下可切换 RTU 设备。
- 抑制电流:可将测量仪配置为不测量电路中感应的/辅助负载电流(可设置为 5至 99 mA 之间)。

您可以将该测量仪用作独立设备,但当它用作电能管理系统的一部分时,才能完全 发挥其广泛的功能。

有关 PM2100 测量仪的应用、功能详情、最大电流和完整规格,请参见www.se.com 网站中的 EasyLogic PM2000 系列技术数据表。

功能汇总

参数	PM2110	PM2120	PM2130
Wh 精度等级	等级 1	等级 1	等级 0.5S
VARh 精度等级	1.0	1.0	1.0
每个周期的采样率	64	64	64
电流:毎相和3相平均值计算的中性相电流	1		✓
电压: ・ 相电压 - 毎相和 3 相平均值 ・ 线电压 - 毎相和 3 相平均值	4	√	✓
功率因数 • 每相和 3 相总值	真实功率因数	真实功率因数 位移功率因数 ¹	真实功率因数 位移功率因数 ¹
频率	✓	✓	✓
功率: ・ 有功功率 (kW) - 毎相値和总値	V	✓	✓

^{1.} 指示只能通过通讯读取的特性

参数	PM2110	PM2120	PM2130
• 视在功率 (kVA) - 每相值和总值			
• 无功功率 (kVAR) - 每相值和总值			
3相不平衡	电流	电流	电流
		电压2	电压2
需量参数 (kW、kVA、kVAR、I)	✓	✓	✓
上一需量当前需量	(无时标)		
 预测需量			
• 峰值需量:峰值需量时标2			
电能:kWh、kVAh、kVARh (4 象限)	流出	流出	流出
• 流出(輸入/正向)	流入	流入	流入
・ 流入(輸出/正向)		总计2	总计2
		净值2	净值2
		上次清除(旧)2	上次清除(旧)2
测量仪运行小时数	✓	✓	✓
负载运行小时数			
电力中断			
THD:	✓	✓	✓
毎相相电压 L-N毎相线电压 L-L			
毎相电流			
单个谐波2	_	高达第 15 个单个谐波	高达第 31 个单个谐波
含有时标的最小值/最大值2	_	✓	✓
・ 平均线电压・ 平均相电压			
 平均电流 			
• 频率			
总有功功率总视在功率			
 总无功功率 			
• 总功率因数			
RTC	_	✓	✓
通讯	POP	RS-485 Modbus RTU	RS-485 Modbus RTU
可扩展模拟 IO 模块 (1 输入和 1 输出)	_	_	✓
可扩展模拟 IO 模块 (2 输入和 2 输出)	_	_	✓
可扩展数字 IO 模块 (2 输入和 2 输出)	-	_	✓
可扩展继电器模块(2数字输入和2继电器输出)	- (/ -	✓
数据记录	-	- 4.	✓
・ 电能(W、VA、VAR):流出/流入・ 功率:有功/视在/无功(总计)		J. T.	
• 需量(W、VA、VAR、A):上次	1. X	g. 00.	
改型 (RtFt) 用于配置旧通讯数据型号	- 100	✓	✓
	建 对相称指	•	

^{2.} 指示只能通过通讯读取的特性

安装转接器

在将测量仪安装到现有面板或开口中时,如果默认的安装五金件不适当,我们提供不同的安装转接器配件辅助安装。

安装转接器套件需要在测量仪以外单独订购。

测量参数

电能

该测量仪可提供双向的 4 象限、Class 1 / Class 0.5S 精度电能测量功能。

该测量仪将所有累计的有功、无功和视在电能参数存储在永久性存储器中:

- kWh、kVARh、kVAh(流出值)
- kWh、kVARh、kVAh(流入值)
- kWh、kVARh、kVAh(流入+流出值)
- kWh、kVARh、kVAh(流入-流出值)

所有电能参数均表示所有 3 相的总和。

注:根据电能刻度选择,当电能参数的 kWh、kVARh、kVAh(已交付)或 kWh、kVARh、kVAh(已接收)的值在 999999999.999 处溢出时,所有电能参数值都会复位。

需量

该测量仪在最大值(峰值)需量出现时可提供上次、当前、预测、最大(峰值)需量值和时标。

该测量仪支持标准需量计算方法,包括滑动区块、固定区块、滚动区块以及热量和同步方法。

峰值需量寄存器可手动复位(受密码保护)。

需量测量包括:

- W、VAR、VA 总需量
- 平均电流需量

瞬时

该测量仪为以下需量提供高精度的 1 秒平均值测量,其中包括真有效值、每相值和总计值:

- 每相和平均电压(线电压、相电压)
- 每相和平均电流以及中性相电流注:中性点电流是计算得出的。
- 每相和总功率 (VA、W、Var)
- 每相及平均真实和位移功率因数
- 系统频率
- 所有三相的电压不平衡和电流不平衡的每相值和最大值

电能质量

该测量仪可为所有电压和电流输入提供完整的谐波失真测量、记录和实时报告,其中 PM2120 可以高达 15 次谐波, PM2130 可以高达 31 次谐波。

提供下列电力质量测量:

- PM2120: 单个奇谐波可以高达 15次(每相电压和电流)
- PM2130: 单个奇谐波可以高达 31st (每相电压和电流)
- (根据选择的系统配置显示线或相)电流和电压总谐波失真(THD%)

数据记录

测量仪存储所有瞬时值的每个新的最小值和最大值(平均值、总计和每相的值)并附带日期和时标。

其它测量

测量仪记录的其他测量值包括数个计时器。

这些计时器包括:

- I/O 计时器显示输入或输出的通电持续时间。
- 运行计时器显示测量仪的通电持续时间。
- 有效负载计时器根据负载计时器设定点设置的指定最小电流显示连接负载的持续时间。

数据显示和分析工具

Power Monitoring Expert

EcoStruxure™ Power Monitoring Expert 是一款用于电力管理应用的完整管理软件包。

该软件将收集和整理从您设施的电网中采集到的数据,并通过简洁直观的 Web 界面将其显示为有意义且可操作的信息。

Power Monitoring Expert 与网络中的设备进行通讯,并提供以下信息:

- 通过多用户 Web 端口实时监控
- 趋势图和集成信息
- 电力质量分析和遵从性监控
- 预配置和自定义的报告

有关如何将设备添加到系统中以进行数据收集和分析的说明,请参见 EcoStruxure™ Power Monitoring Expert 在线帮助。

Power SCADA Operation

EcoStruxure™ Power SCADA Operation 是一款专为大型设施和关键基础设施操作而设计的完整的实时监控和控制解决方案。

它与您的设备进行通讯,旨在实现数据采集和实时控制。您可使用 Power SCADA Operation 完成以下任务:

- 系统监管
- 实时和历史趋势、事件记录

EasyLogic™ PM2100 系列 简介

• 基于个人电脑的自定义报警

有关如何将设备添加到系统中以进行数据收集和分析的说明,请参见 EcoStruxure™ Power SCADA Operation 在线帮助。

测量仪配置

测量仪配置通过显示屏或 PowerLogic™ ION Setup 执行。

ION Setup是一款测量仪配置工具,可从www.se.com免费下载。

请参阅ION Setup在线帮助或"ION Setup device configuration guide"中的 "EasyLogic PM2000 Series Power Meter"。要下载副本,请转到 www.se.com,并 搜索"ION Setup device configuration guide"。

硬件参考

PM2100 测量仪型号和配件

PM2100 系列测量仪可以提供一种物理外形尺寸和三种不同的型号。

测量仪型号

型 号	产品物料号	描述
PM2110	METSEPM2110	具有脉冲输出的 Class 1 面板安装 LED 测量仪。
PM2120	METSEPM2120	具有 RS-485 通讯和高达 15 次奇谐波的 Class 1 面板安装 LED 测量仪。
PM2130	METSEPM2130	具有 RS-485 通讯和高达 31 次奇谐波并具备 IO 支持和数据日志报 警的 Class 0.5S 面板安装 LED 测量仪。

测量仪配件

型号	产品物料号	描述
双通道数字输入输出模块	METSEPM2KDGTLIO22和 METSEPM2KDGTLIO22D	具有双通道输入和输出的数字 I/O 模块。
双通道模拟输入输出模块	METSEPM2KANLGIO22和 METSEPM2KANLGIO22D	具有双通道输入和输出的模拟 I/O 模块。
单通道模拟输入输出模块	METSEPM2KANLGIO11和 METSEPM2KANLGIO11D	具有单通道输入和输出的模拟 I/O 模块。
双通道数字输入和继电器 输出模块	METSEPM2K2DI2RO和 METSEPM2K2DI2ROD	具有双通道数字输入和继电器输出的继电器输出。

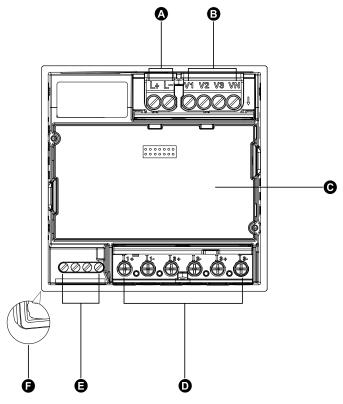
注: 只有 PM2130 型测量仪支持 I/O 模块。

关于测量仪安装转接器的可用信息,请参阅 www.se.com 中的 PM2000 系列目录页面或咨询当地 Schneider Electric 代表。

补充说明

本文件旨在与随设备及配件一并提供的安装工作表一同使用。

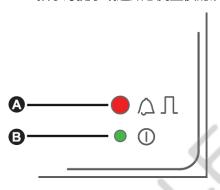
有关安装信息,请参见设备的安装工作表。


关于您的设备、选件和配件的信息,请访问 www.se.com 中的产品目录页面。

关于产品的最新信息,请从 www.se.com 下载更新的文档或联系当地 Schneider Electric 代表。

面板测量仪

测量仪后部支持各种电源连接方式。


EasyLogic™ PM2100 系列 硬件参考

Α	辅助电源(控制电源)端子(L+、L-)
В	输入电压端子 (V1、V2、V3、VN)
С	可选 I/O 槽(仅用于 PM2130)
D	输入电流端子 (I1+、I1-、I2+、I2-、I3+、I3-)
Е	RS-485 通讯 (D0、D1、SHLD、0V) / POP 端子 (D1+、D1-)
F	村垫

LED 指示灯

LED 指示灯提示或通知您测量仪的活动情况。

A 报警/电能脉冲指示灯(红色)		
В	心跳/串行通讯 LED 指示灯(绿色)	

测量仪安装

有关安装说明和安全措施的信息,请参见随测量仪提供的设备安装工作表。

您也可以在 www.se.com 下载副本。

测量仪接线

有关接线说明和安全措施的信息,请参见随测量仪提供的测量仪安装工作表。 您也可以在 www.se.com 下载副本。

直接连接电压限值

如果电力系统的线间电压或相电压未超过测量仪的直接连接最大电压限值,则您可以将测量仪的电压输入直接连接到电力系统的相电压线。

测量仪的电压测量输入由制造商规定,最高为 277 V L-N/480 V L-L。但是,直接连接允许的最大电压可能较低,这取决于当地电气法规与规定。根据安装类别 II / III,测量仪电压测量输入不得超过 277 V L-N / 480 V L-L(CAT III)和 347 V L-N / 600 V L-L(CAT III)。

如果您的系统电压大于指定的直接连接最大电压,则必须使用 VT(电压互感器)来降低电压。

电力系统说明	测量仪设	Ĕ	符号	直连最大值 (UL / IEC)		直连最大值 (UL / IEC)		VT 编号(如果需
	显示 (测量 仪)	显示(通讯)		安装类别 III	安装类别Ⅱ	- 要)		
单相两线相电压	1P.LN	1PH 2Wire L-N		≤ 277 V L-N	≤ 347 V L-N	1个电压互感器		
单相两线线电压	1P.LL	1PH 2Wire L-L		480 V L-L	600 V L-L	1 个电压互感器		
单相3线线对线,带零线	1P.3L	1PH 3Wire L-L with N		≤ 277 V L-N / 480 V L-L	≤ 347 V L-N / 600 V L-L	2 个电压互感器		
3相3线无接地三角形	3P.3L	3PH 3Wire Ungrounded Delta	Eur J	480 V L-L	600 V L-L	2 个电压互感器		
3相3线角接地 三角形		3PH 3Wire Corner Grounded Delta	± Emi	240 V L-L	600 V L-L	2 个电压互感器		

EasyLogic™ PM2100 系列 硬件参考

电力系统说明	B力系统说明 测量仪设置		符号	直连最大值 (UL / IEC)		VT 编号(如果需	
	显示 (测量 仪)	显示(通讯)		安装类别Ⅲ	安装类别Ⅱ	- 要) -	
3相3线无接地 星形		3PH 3Wire Ungrounded Wye		480 V L-L	600 V L-L	2 个电压互感器	
3相3线接地星形		3PH 3Wire Grounded Wye		480 V L-L	600 V L-L	2 个电压互感器	
3相3线阻抗接地星形		3PH 3Wire Resistance Grounded Wye		277 V L-N / 480 V L-L	347 V L-N / 600 V L-L	2 个电压互感器	
3相4线中心抽头式开放三角形	3P.4L	3PH 4Wire Center-Tapped Open Delta	Lugar N	173 V L-N / 347 V L-L	347 V L-N / 600 V L-L	3 个电压互感器	
3相4线中心抽头式三角形		3PH 4Wire Center-Tapped Delta	N N N N N N N N N N N N N N N N N N N	173 V L-N / 347 V L-L	347 V L-N / 600 V L-L	3 个电压互感器	
3相4线无接地星形		3PH 4Wire Ungrounded Wye		≤ 277 V L-N / 480 V L-L	≤ 347 V L-N / 600 V L-L	3 个电压互感器或 2 个电压互感器	
3相4线接地星形		3PH 4Wire Grounded Wye		≤ 277 V L-N / 480 V L-L	≤ 347 V L-N / 600 V L-L	3 个电压互感器或 2 个电压互感器	
3相4线阻抗接地星形		3PH 4Wire Resistance Grounded Wye	W I I I I I I I I I I I I I I I I I I I	≤ 277 V L-N / 480 V L-L	≤ 347 V L-N / 600 V L-L	3 个电压互感器或 2 个电压互感器	

平衡系统注意事项

在监控平衡 3 相负载的情况下,可以选择仅连接需要测量的相上的 1 个或 2 个电流互感器,然后配置测量仪以便它计算未连接的电流输入上的电流。

注: 对于平衡 4 线星形系统,测量仪的计算假设没有电流流经零线。

平衡 3 相星形系统配备 2 个电流互感器

计算未连接的电流输入的电流,使所有三相电流的矢量和等于零。

平衡 3 相星形或三角形系统配备 1 个电流互感器

计算未连接的电流输入的电流,使其幅值和相角相同并进行相等分配,并使所有三相电流的矢量和等于零。

注: 必须始终在 3 相 4 线中心抽头式三角形或中心抽头式开放三角形系统中使用 3 个电流互感器。

串行通讯

测量仪支持通过 RS-485 端口进行的串行通讯。单根 RS-485 总线上最多可以连接 32 个设备。

在 RS-485 网络中,有一个主设备,通常是 RS-485 网关的以太网。它可以提供 RS-485 与多个从设备(例如测量仪)之间的通信。对于只需要一台专用计算机与 从设备进行通讯的应用,RS-232 至 RS-485 转换器可以用作主设备。

RS-485 接线

在点对点配置中,通过将一台设备的 (+) 和 (-) 端子连接到下一台设备的对应 (+) 和 (-) 端子的方法,来连接 RS-485 总线上的设备。

RS-485 电缆

使用屏蔽 2 双绞线或 1.5 双绞线 RS-485 电缆来连接设备。使用 1 根双绞线来连接 (+) 和 (-) 端子,然后使用其它绝缘线来连接 C 端子

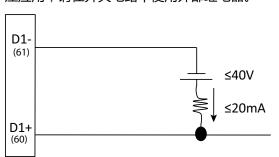
RS-485 总线上连接的设备的总距离不得超过 1000 米 (3280 英尺)。

RS-485 端子

С	共用。可以提供数据正极和数据负极信号的电压参考(0伏特)
\ominus	屏蔽。将裸线连接到此端子,有助于抑制可能出现的信号噪音。仅将屏蔽接线的一端(主设备或最后一个从设备,但不能同时包含两者)接地。
-	数据负极。可以传输接收反转数据信号。
+	数据正极。可以传输接收非反转数据信号。

注: 如果 RS-485 网络中的某些设备没有 C 端子,请使用 RS-485 电缆中的裸线将 C 端子从测量仪连接到不含 C 端子的设备上的屏蔽端子。

脉冲输出

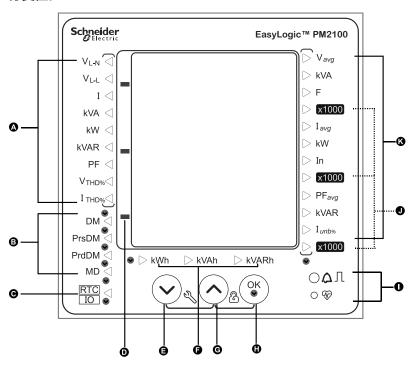

注: 仅适用于 PM2110 型号的测量仪

测量仪配备 1 个脉冲输出端口(D1+、D1-)。

可以配置脉冲输出,以供以下应用场合使用:

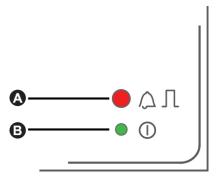
• 电能脉冲应用,此时接收设备通过对来自测量仪脉冲输出端口的 k_h 脉冲进行计数,从而确定电能使用情况。

一次脉冲输出可以处理低于或等于 40 V DC(最高达 20 mA)的电压。对于更高电压应用,请在开关电路中使用外部继电器。



显示屏和测量仪设置

显示概览


显示屏使您能够使用测量仪来执行各种任务,比如设置测量仪、显示数据屏幕或执行复位。

Α	相测量	V _{L-N} , V _{L-L} , I, kVA, kW, kVAR, PF, V _{THD} , I _{THD}
В	需量测量	DM、PrsDM、PrdDM、MD
С	RTC(琥珀色)/IO(绿色)	
D	负号	
Е	导航键	向下导航
F	电能读数	视在电能、有功电能和无功电 能
G	导航键	向上导航
Н	确定 Enter 键	
I	电能脉冲指示灯(红色)	
	心跳/通讯指示灯(绿色)	
J	x 1000 指示灯	
К	系统测量	Vavg、kVA、F、lavg、kW、 In、PF _{avg} 、kVAR、l _{unb}

LED 指示灯

LED 指示灯提示或通知您测量仪的活动情况。

Α	报警/电能脉冲指示灯(红色)
В	心跳/串行通讯 LED 指示灯(绿色)

报警使能脉冲指示灯

报警/电能脉冲指示灯可配置用于报警通知或电能脉冲。

如果配置用于报警通知,则此指示灯会每秒闪烁一次,指示触发高、中或低优先级报警。该指示灯可为激活的报警状况或未激活但未确认的高优先级报警提供视觉指示。

如果配置用于电能脉冲,则此指示灯将以与电能消耗量成比例的速率闪烁。此法通常用来验证电力参数测量仪的精度。

心跳/串行通讯指示灯

心跳/串行通讯指示灯闪烁指示测量仪的工作状态以及 Modbus 串行通讯状态。

指示灯稳定慢速闪烁表示测量仪在工作。当测量仪通过 Modbus 串行通讯端口进行通讯时,该指示灯不稳定快速闪烁。

您无法将此指示灯配置为用于其它目的。

注: 心跳指示灯始终点亮且不闪烁则表示有问题。在这种情况下,请关闭测量仪电源并再次通电。如果该指示灯仍然不闪烁,则请与技术支持部门联系。

按钮功能

测量仪支持单按钮和组合按钮功能。

符号	描述
V	向下导航到项目列表。
按住2秒。	向左移动光标。
	向上导航到项目列表。
按住2秒。	向右移动光标。

符号	描述
ОК	选择参数。
OK 按住 2 秒。	进入或退出清除页面。
(V) + (A)	进入或退出设置页面。
	进入或退出诊断页面。
(₹) + (0K)	锁定或解锁测量仪页面。

测量仪屏幕菜单

所有测量仪屏幕均已根据其功能进行了逻辑分组。通过首先选择包含有测量仪屏幕的第 1 级(顶级)菜单即可访问任何可用的屏幕。

您可以通过测量仪的前面板查看参数值,配置参数,执行需量复位,执行指示灯检查和查看测量仪信息。可以通过按下前面板上的向上、向下和确认按钮完成各项功能。

根据测量仪所处的模式,这些按钮操作的结果也不同:

显示模式(默认):查看参数测量

设置模式:配置参数清除模式:复位测量

• 锁定模式:锁定或解锁屏幕

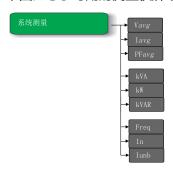
本节介绍了各种模式内的前面板导航。

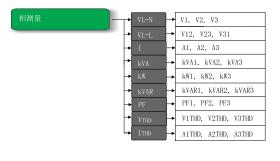
显示屏屏幕菜单

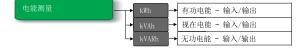
在显示模式中,您可以查看下述测量组的数值:

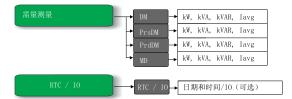
- 系统测量
- 相测量
- 电能测量
- 需量测量
- RTC

查看显示屏参数


测量仪显示屏幕和按钮允许您查看所需参数。


- 1. 按"确定"按钮导航到不同的测量类型。
- 2. 按"向上"或"向下"按钮导航到每种测量类型中的上一或下一数值。


显示屏屏幕菜单树


使用菜单树导航到您希望查看的设置。

下图汇总了可用的测量仪屏幕和参数:

显示屏参数

测量仪显示各种电力系统测量。

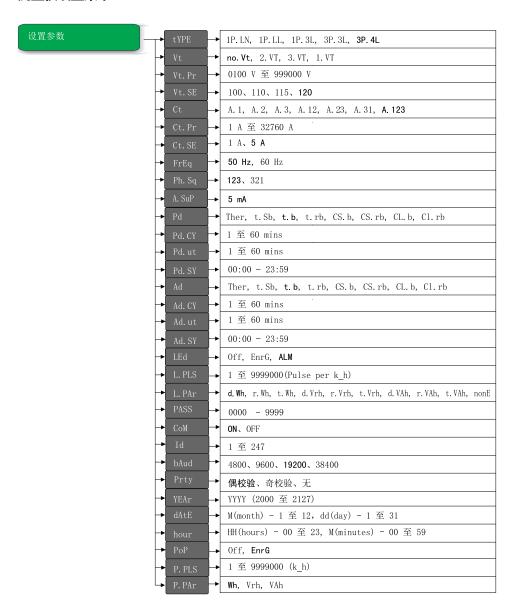
测量组	已测量参数
系统测量	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
相测量	$V_{L\text{-N}},\ V_{L\text{-L}},\ I,\ kVA,\ kW,\ kVAR,\ PF,\ V_{THD},\ I_{THD}$
需量测量	DM、PrsDM、PrdDM、MD
RTC/IO	日期和时间 注: RTC 仅适用于支持 RS-485 通讯的测量仪。具有 POP 的测量仪不支持这一功能。测量仪支持数字和模拟 IO。 注: 只有 PM2130 型测量仪支持 IO。其他 LED 变型不支持 IO 功能。
电能读数	kWh(有功电能):流出流入 kVAh(视在电能):流出流入 kVARh(无功电能):流出流入

注: 当 x 1000 LED 亮起时,实际值为显示值乘以 1000。

查看显示屏参数中的按钮功能

显示模式为测量仪接通电源时的默认页面。

模式	按钮	功能
显示模式	V	查看下一参数值。
	\triangle	查看上一参数值。
	ОК	从一个测量组移动到下一个测量组。


设置屏幕菜单

您可以通过设置屏幕配置各种设置参数。

下面是测量仪支持的设置参数和配置列表。

测量仪设置菜单

输入设置

测量仪显示屏幕和按钮允许您导航到所需参数并讲行编辑。

- 1. 同时按住"向上"和"向下"键持续2秒。
- 2. 输入密码。默认密码为 0000。
- 3. 按"确定"键进入设置。
- 4. 在查看参数后,同时按住"向上"和"向下"键持续2秒,退出设置。

设置参数

测量仪支持配置各种测量参数。

C Walter

显示屏上的名称	描述	输入范围	默认值
EYPE 3P.YL	tYPE = 电力系统配置	輸入范围 = 1P.Ln、1P.LL、 1P.3L、3P.3L、3P.4L 注: 可以通过 ION Setup 来 设置其他电力系统配置。	3P.4L
	Vt= 电压互感器连接	輸入范围 = no.Vt、2.VT、3. VT、1.VT 注: 电压互感器连接参数将 根据选择的电力系统配置激 活。	no.Vt
UL.Pr	Vt.Pr = 原边电压 (V L-L)	0100 V 至 999000 V 注: 如果电压互感器连接为 no.VT,则不会激活 Vt.Pr。	120
UE.SE 120	Vt.SE = 次边电压 (V L-L)	100、110、115、120 V 注: 如果电压互感器连接为 no.VT,则不会激活 Vt. SE。	120
[E A. 123	Ct = 电流互感器端子	A.1, A.2, A.3, A.12, A.23, A.31, A.123 注: Ct 端子参数会根据选择的电力系统和电压互感器连接配置激活。	A.123
CLPr 0005,	Ct.Pr = CT 原边	1 A 至 32760 A 注: 可以通过通讯将 Ct 原边设置为最高 32767 A。	5
ELSE 5	Ct.SE = CT 次边	1 A、5 A	5
F-E9 50	FrEq = 系统频率	50 Hz, 60 Hz	50
Ph.59 123	Ph.Sq = 相序	123、321	123
A.S.JP 0005	A.SuP:A.抑制(测量仪开始工作的最小电流)	5 mA 至 99 mA	5
Pd L.b	Pd = 功率需量	tHEr、t.Sb、t.b、t.rb、CS.b、CS.rb、CL.b、CL.rb	t.b
PdE 9 00 15	Pd.CY = 功率需量周期	1至60分钟 注:需量更新时间可以用于 功率需量中的滚动区块法。	15

Pdut	Pd.ut = 功率需量更新时间	1至60分钟 注:功率需量更新时间可用于功率需量中的滚动区块法。	15
Pd59	Pd.SY = 功率需量时钟同步时间	00:00 至 23:59 注: 时钟同步时间仅可以用于功率需量中的时钟同步区块和时钟同步滚动区块法。	00.00
Ad L.b	Ad = 电流需量	tHEr、t.Sb、t.b、t.rb、CS.b、CS.rb、CL.b、CL.rb	t.b
Adc 4 00 15	Ad.CY =电流需量周期	1至60分钟	15
Adut	Ad.ut = 电流需量更新时间	1至60分钟 注:电流需量更新时间可以 用于电流需量中的滚动区块 法。	15
Ad.54	Ad.SY = 电流需量时钟同步时间	00:00 至 23:59 注: 时钟同步时间仅可以用于电流需量中的时钟同步区块和时钟同步滚动区块法。	00.00
LEU ALLU	LEd = LED 指示灯	Off, EnrG, ALM	ALM
LPLS J	L.PLS = LED 脉冲分量	1至9999000(脉冲/k_h) 注:如果 LED 关闭,则无法 查看每个电能值的脉冲次 数。	1
L.PAr nonE	L.PAr = LED 电能参数	d.Wh, r.Wh, t.Wh, d.Vrh, r.Vrh, t. Vrh, d.VAh, r.VAh, t.VAh, nonE 注: 如果 LED 关闭,则无法 查看 LED 参数值。	无
PASS 0000	PASS = 密码	0000 - 9999	0000
	CoM = 通讯 注: 如果通讯关闭,则无法 查看 ID、波特率和奇偶校 验。	ON , OFF , RTFT 注: ON / OFF: 启用/禁用通讯端口。 注: Retrofit (RTFT): 用于配置旧通讯数据型号。	#
(d	Id = 单元 ID	1至247	1

显示屏上的名称	描述	输入范围	默认值
6Aud 1920	bAud = 波特率	4800, 9600, 19200, 38400	19200
Prty EUEn	Prty = 奇偶校验	偶、奇、无	偶
9EA- 2000	YEAr = RTC	YYYY (2000至2127)	不适用
O IO I	dAtE = 月:日	MM (月) - 1 至 12 dd (天) - 1 至 31	不适用
hour 00.00	hour = 小时:分	HH (小时) - 00 至 23 MM (分) - 00 至 59	不适用
PoP EnrG	PoP = 通讯脉冲输出	Off, EnrG 注: 如果 POP 关闭,无法 查看脉冲分量和电能参数。	EnrG
PPLS 200	P.PLS = POP 脉冲分量	1至9999000(脉冲/k_h)	200
P.PAr Luh	P.PAr = POP 电能参数	Wh、VAh、Vrh	Wh
	指示可选设置参数		

查看设置参数中的按钮功能

测量仪支持使用单按钮和组合按钮功能查看设置参数。

模式	按钮	功能
设置菜单		导航到下一参数配置屏幕。
以巨木干	\triangle	导航到上一参数配置屏幕。

模式	按钮	功能
	OK	进入设置模式,配置显示的参数值。
	(V) + (A)	同时按住"向上"和"向下"按钮持续2秒,进入设置。
		以相同的按钮顺序退出设置页面。

编辑设置参数中的按钮功能

测量仪支持使用单按钮和组合按钮功能编辑设置参数。

模式	按钮	功能
		闪烁数字:减小数值。
	(闪烁数值:从列表中查看下一数值。
		闪烁小数点:向左移动小数点。
		闪烁数字:增大数值。
	(\triangle)	闪烁数值:从列表中查看上一数值。
		闪烁小数点:向右移动小数点。
	t7/t 2 #/\	闪烁数字/闪烁小数点:将光标位置向左移 动。
设置菜单	按住2秒。	
	按住2秒。	闪烁数字/闪烁小数点:将光标位置向右移 动。
		选择要编辑数值的参数。
	ОК	选择配置的参数值。
		保存对设置参数做出的更改。
	(∇) + (\triangle)	同时按住"向上"和"向下"按钮持续2秒,进入设置。
		以相同的按钮顺序退出设置页面。

编辑设置参数

您也可以根据需要编辑各种测量参数。

- 1. 同时按住"向上"和"向下"按钮持续2秒,进入设置。
- 2. 输入密码。默认密码为 0000。
- 3. 按"确定"。
- 4. 按"向上"或"向下"按钮选择要编辑的参数。 闪烁显示选择参数中需要设置的数字、数值或小数点(测量仪根据参数自动决定闪烁显示要编辑的参数)。
- 5. 使用"向上"或"向下"按钮增加或减少数字值,移动小数点或从预编程列表中选择数值。
- 6. 做出所需的更改后按"确定"。
- 7. 同时按住"向上"和"向下"按钮持续2秒,退出设置。

8. 按"是"保存设置。

退出设置参数

下述步骤介绍了如何在不编辑任何参数值的情况下退出设置模式。

- 1. 同时按住"向上"和"向下"按钮持续2秒,进入设置。
- 2. 输入密码。默认密码为 0000。
- 3. 按"确定"。
- 4. 按"向上"或"向下"按钮查看各种设置参数。
- 5. 同时按住"向上"和"向下"按钮持续 2 秒,退出设置,不保存对参数值做出的任何更改。

Demand

需量参数

需量是固定编程的时段内平均消耗 (通常为功率或电流消耗)的度量。

功率需量/电流需量设置参数

参数	数值	描述
方法	 热量: Ther 定时滑动区块: t.Sb 定时区块: t.b 定时区块: t.rb 命令同步区块: CS.b 命令同步滚动区块: CS.rb 时钟同步区块: CL.b 时钟同步滚动区块: Cl.rb 注: 命令同步和时钟同步法仅适用于支持 RS-485 通讯的测量仪。 	请根据需要选择相应的需量计算方法。
间隔	1至60	设置需量间隔,单位为分钟。
子间隔(更新时间)	1至60	仅适用于滚动区块方法。 定义需量间隔应等分为多少个次间隔。
时钟同步时间	00:00 – 23:59	仅适用于时钟同步方法(这些方法将需量间隔同步为测量仪的内部时钟)。 定义您要对需量进行同步的时间。

查看显示屏屏幕上的需量值

通过导航到显示参数,可以查看显示屏幕上的需量值。

- 1. 按"确定"导航到显示屏上的需量值。
- 2. LED 指示上一需量 (DM)。屏幕上显示的数值指示 kVA、kW 和 kVAR。
- 3. 按"向下"按钮查看 lavg 数值。
- 4. 重复上述步骤查看当前需量 (PrsDM)、预测需量 (PrdDM) 和最大需量 (MD) 值。

查看设置屏幕中的需量值

测量仪支持通过设置模式编辑功率和电流需量。

- 1. 同时按住"向上"和"向下"按钮持续2秒,进入设置。
- 2. 输入密码。默认密码为 0000。
- 3. 按"确定"。
- 4. 按"向下"按钮选择 Pd (功率需量)或 Ad (电流需量)参数。
- 5. 按"确定"。
- 6. 按"向下"按钮,从当前列表中选择所需数值。
- 7. 按"确定"。
- 8. 同时按住"向上"和"向下"按钮持续2秒,退出设置。
- 9. 按"是"保存设置。

通信设置

连接测量仪的串行通讯端口后,即可配置这些端口以便能够远程连接到测量仪,并使用设备配置软件 ION Setup 来配置该测量仪。

利用设置屏幕,可配置测量仪的 RS-485 通讯端口,以便能够使用软件来访问测量仪的数据或远程配置测量仪。

要打开设置屏幕通信,遵守如下步骤:

- 1. 同时按住"向上"和"向下"按钮持续2秒,进入设置。
- 2. 输入密码。默认密码为 0000。
- 3. 按"确定"。
- 4. 按"向下"按钮选择 CoM (通讯)参数。
- 5. 按"确定"。
- 6. 按"向下"按钮,从列表中选择开。
- 7. 按"确定"。
- 8. 同时按住"向上"和"向下"按钮持续2秒,退出设置。
- 9. 按"是"保存设置。

RS-485 通讯参数

参数	数值	描述
地址	1至247	设置此设备的地址。通讯回路中每个设备的地址必须唯一。
波特率	4800, 9600, 19200, 38400	选择数据传输的速度。通讯回路中所有设备的波特率必 须相同。
奇偶校验—— 停止位数	偶——1 奇——1 无——2	如果未使用奇偶校验位,请选择"None"。通讯回路中所有设备的奇偶校验设置必须相同。

注: 通讯参数显示屏 ON / OFF / Retrofit (RTFT)。

注: 改型为您提供了配置旧数据型号的选项,以便您的设备与较新的型号通讯 (仅适用于 PM2120 和PM2130 型号测量仪)。

设置密码

测量仪密码只能通过前面板进行配置。

所有密码的出厂默认设置都是"0000"(零)。更改有密码保护的屏幕的默认密码,可以防未经授权的人员访问某些屏幕,比如设置和清除屏幕。

要使用设置来更改测量仪密码,步骤如下:

- 1. 同时按住"向上"和"向下"按钮持续2秒,进入设置。
- 2. 输入密码。默认密码为 0000。
- 3. 按"确定"。
- 4. 按"向下"按钮选择 PASS (密码)参数。
- 5. 按"确定"。
- 6. 按"向下"按钮更改数字。

注: 按"向下"按钮 2 秒将光标移动到下一个数字。

- 7. 按"确定"。
- 8. 同时按住"向上"和"向下"按钮持续2秒,退出设置。
- 9. 按"是"保存设置。

密码设置

参数	数值	描述	
密码	0000 - 9999	设置用于访问测量仪设置屏幕的密码。	
		注 : 所有参数采用公共密码。	

丢失密码

若密码丢失或有其它测量仪技术问题,请访问 www.se.com 以获取支持和帮助。请务必在您的电子邮件中列出测量仪的型号、序列号和固件版本,或在呼叫技术支持部门时准备好这些信息。

设置日期和时间

利用时钟设置,您能够设置测量仪的日期和时间。

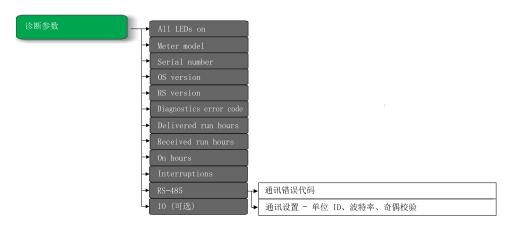
- 1. 同时按住"向上"和"向下"按钮持续2秒,进入设置。
- 2. 输入密码。默认密码为 0000。
- 3. 按"确定"。
- 4. 按"向下"按钮选择年份、日期和小时参数。
- 5. 按"确定"。
- 6. 按"向下"按钮更改数字。

注:按住"向下"按钮 2 秒将光标移动到下一个数字。

- 7. 按"确定"。
- 8. 同时按住"向上"和"向下"按钮持续2秒,退出设置。
- 9. 按"是"保存设置。

注: 必须将测量仪时间设置为当地时间或与当地时间同步。

时钟设置参数


参数	数值	描述
年	YYYY	使用屏幕上显示的格式设置当前年份。
日期	MM:DD	使用屏幕上显示的格式来设置当前日期,其中日期格式 为 MM (月)和 DD (日期)。
小时	HH:MM	使用 24 小时制将当前时间设置为当地时间,其中时间格式为 HH (小时)和 MM (分钟)。

诊断屏幕菜单

在诊断屏幕中,您可以确认前面板 LED 并查看测量仪信息。

下面是测量仪屏幕上显示的诊断参数的列表。

测量仪诊断菜单

查看诊断

测量仪显示屏幕和按钮允许您导航到诊断。

- 1. 同时按住"向下"和"确定"按钮持续2秒,查看诊断。
- 2. 按"向下"按钮导航到下一屏幕。
- 3. 同时按住"向下"和"确定"按钮持续2秒,退出诊断。

诊断屏幕

测量仪显示各种诊断屏幕。

屏幕	描述	
All LEDs on	进入诊断屏幕时,前面板上的所有 LED 都会亮起。显示屏上显示四个八 (8888)、每行四个小数点 ()、负号和参数 LED。这表示前面板 LED 和显示屏工作正常。	
Meter Model	显示测量仪型号。	
Serial number	显示测量仪序列号,例如 SN.0500005174。 注: 联系技术支持部门寻求帮助时,请确保您已记录测量仪的序列号信息。	
OS version	显示操作系统版本号,例如 OS 1.00.0。	
RS version	显示复位(启动代码)版本号,例如 RS 1.00.0。	
Diagnostics error code	显示测量仪的诊断错误代码。 例如:0041 是超转电能脉冲输出的错误代码。	
Dun haum	Delivered / Import	指示已供给负载的期间。只要负载开启,此计数器即始终累计数值。
Run hours	Received / Export	指示已接收负载的期间。只要负载开启,此计数器即始终累计数值。
On hours	指示电力参数测量仪开启辅助电源的期间,无论电压和电流输入。	
Interruptions	电源中断次数,指辅助电源中断的次数。如果电力参数测量仪的辅助电源来源于 UPS,则 INTR(中断次数)为零(只要 UPS 一直开启),即使电压信号不时消失也是如此。	
RS-485	Communication error code	显示测量仪的通讯错误。
	Communication settings screen	显示测量仪的单位 ID、波特率和奇偶校验。
Ю	显示使用的 IO 卡类型。 注: 只有 PM2130 支持外部 IO 卡。PM2100 系列测量仪的其他型号不支持 IO 卡。	

查看诊断屏幕中的按钮功能

测量仪支持使用单按钮和组合按钮功能查看诊断屏幕。

模式	按钮	功能
	V	导航到下一屏幕。
设置菜单	\triangle	导航到上一屏幕。
	(V) + (ok)	同时按住"向下"和"确定"按钮持续2秒,查看诊断。
		以相同的按钮顺序退出诊断屏幕。

清除屏幕菜单

您可以利用清除屏幕复位电能、需量、最小值/最大值或最大需量值。 下面是测量仪屏幕上显示的清除屏幕参数的列表。

测量仪清除屏幕菜单

进入清除屏幕

利用测量仪显示屏幕和按钮可以导航到清除。

- 1. 按住"确定"按钮 2 秒。
- 2. 按住"向上"按钮选择"是"。
- 3. 按"确定"。
- 4. 输入密码。默认密码为 0000。
- 5. 按"确定"。
- 6. 按"向下"或"向上"按钮导航到清除数值所需的参数。
- 7. 同时按住"确定"按钮持续2秒,退出清除屏幕。

清除参数

测量仪支持复位各种测量参数。

参数	描述
电能	复位电能值。测量仪支持复位下述参数值:
DM	用于需量同步功能。测量仪支持复位下述参数值: ・ 上一需量 ・ 当前需量 ・ 预测需量
Hi Lo	复位最小值和最大值。测量仪支持复位下述参数值: 平均线电压 平均相电压 平均电流 频率 总有功功率 总视在功率 总无功功率 总功率因数
MD	复位最大需量值。 • 含有时标的 W、VA、VAR 和电流需量

编辑清除参数中的按钮功能

测量仪支持使用单按钮功能进入清除屏幕。

模式	按钮	功能
	ОК	按住"确定"按钮持续2秒,进入清除屏幕。
		按"确定"按钮清除/复位参数值。
		按住"确定"按钮持续2秒,退出清除屏幕。
清除屏幕	V	导航到下一参数。
	\triangle	导航到上一参数。

锁定/解锁

利用锁定可以将测量仪屏幕设置为默认屏幕。在屏幕锁定过程中,可以滚动到其他显示屏幕。手动滚动停止时,测量仪将在四分钟后显示默认(锁定)屏幕。

利用测量仪显示屏幕和按钮可以锁定或解锁任意屏幕。

锁定/解锁测量仪屏幕:

• 同时按住"向上"和"确定"按钮持续2秒,锁定或解锁测量仪屏幕。

注:

您只能锁定显示屏参数。

测量仪屏幕锁定时,无法进入设置或清除页面。

锁定/解锁测量仪屏幕中的按钮功能

测量仪支持通过组合按钮功能来锁定或解锁屏幕。

模式	按钮	功能
锁定/解锁		同时按住"向上"和"确定"按钮持续 2 秒,锁定或解锁测量仪屏幕。

远程测量仪设置

概述

您可通过测量仪的 RS-485 通讯端口配置测量仪的设置参数。

测量仪出厂时已配置默认的 RS-485 通讯端口设置。将测量仪连接到 RS-485 网络之前,您必须修改默认设置。要配置 RS-485 端口,您需要:

ION Setup

ION Setup

转至 www.se.com 并搜索 ION Setup,以下载安装文件的副本。

如果您现已安装 ION Setup,建议您将其升级至最新版本,以便使用新功能或增强功能,并正确配置设备上可用的功能。

有关如何使用 ION Setup, 请参考在线帮助。

RS-485 端口设置

测量仪在出厂时已配置为默认的串行通讯设置,将测量仪连接至 RS-485 总线之前,您需要修改这些默认设置。

测量仪在出厂时已配置为使用以下默认的串行通讯设置:

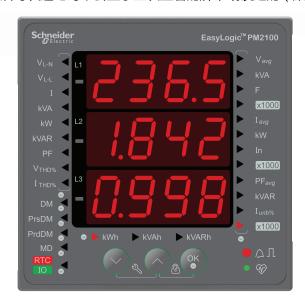
- 协议 = Modbus RTU
- ・ 地址 = 1
- 波特率 = 19200
- 奇偶校验 = 偶

您可使用通讯转换器 (USB 至 RS-485 或者 RS-232 至 RS-485) 来连接至测量 仪。

通过 RS-485 设置测量仪

配置测量仪的 RS-485 端口并将其连接至 RS-485 网络之后,您可以使用 ION Setup 来配置所有其它测量仪设置参数。

使用 ION Setup 配置测量仪


启动 ION Setup,创建一个站点(或者在适用时使用现有站点),然后将测量仪添加到该站点。

请参阅在线帮助或"ION Setup device configuration guide"中的主题"EasyLogic PM2000 Series Power Meter"。要下载副本,请转到 www.se.com,并搜索"ION Setup device configuration guide"。

查看测量仪数据

从显示屏查看测量仪数据

测量仪第一次接通电源时,显示屏上会显示平均电压、平均电流和平均功率因数,以后每次通电时,会显示上次查看的屏幕或锁定的(默认)屏幕。

测量仪数据屏幕

测量屏幕按照相测量、系统测量、需量测量、能源计量和 RTC / IO 进行划分。

测量仪数据的显示屏幕

下面列出了屏幕菜单项。

系统测量

Vavg	3 相平均电压
kVA	总视在功率
F	频率 (Hz)
x1000	乘法因数
平均	3 相平均电流
kW	总有功功率
In	中性点电流
x1000	乘法因数
PF _{avg}	平均功率因数
kVAR	总无功功率
lunb	不平衡电流
x1000	乘法因数

相测量

V _{L-N}	相电压		V1	V2	V3
V _{L-L}	线电压		V12	V23	V31
I	电流		A1	A2	A3
kVA	视在功率		kVA1	kVA2	KVA3
kW	有功功率		kW1	kW2	kW3
kVAR	无功功率		kVAR1	KVAR2	KVAR3
PF	功率因数	-: 超前 PF	PF1	PF2	PF3
		+: 滞后 PF			
V_{THD}	电压 THD%		V1 _{THD}	V2 _{THD}	V3 _{THD}
I _{THD}	电流 THD%		A1 _{THD}	A2 _{THD}	A3 _{THD}

电能测量

kWh	有功电能 - 输入/流出 (+)	
	有功电能 - 输出/流入 (-)	
kVAh	视在电能 - 输入/流出 (+)	
	视在电能 - 输出/流入 (-)	
kVARh	无功电能 - 输入/流出 (+)	
	无功电能 - 输出/流入 (-)	

需量测量

DM	上一需量	kVA	kVAR	kW	l _{avg}
PrsDM	当前/升高需量	kVA	kVAR	kW	l _{avg}
PrdDM	预测需量	kVA	kVAR	kW	l _{avg}
MD	最大需量	kVA	kVAR	kW	l _{avg}

RTC / IO

RTC	日期和时间	年/日期/小时
IO (仅适用于 PM2130)		

使用 ION Setup 查看或修改配置数据

您可以使用 ION Setup 来查看或修改测量仪的设置参数。

使用软件来查看测量仪数据

您可以使用不同的软件系统和方法来访问或显示测量仪数据。这既包括使用简单的 Modbus 寄存器界面来读取测量仪寄存器中存储的值,也包括通过电能管理系统来 查看测量仪中的智能信息。

Power Monitoring Expert

EcoStruxure™ Power Monitoring Expert 是一款用于电力管理应用的完整管理软件包。

该软件将收集和整理从您设施的电网中采集到的数据,并通过简洁直观的 Web 界面将其显示为有意义且可操作的信息。

Power Monitoring Expert 与网络中的设备进行通讯,并提供以下信息:

- 通过多用户 Web 端口实时监控
- 趋势图和集成信息
- 电力质量分析和遵从性监控
- 预配置和自定义的报告

有关如何将设备添加到系统中以进行数据收集和分析的说明,请参见 EcoStruxure™ Power Monitoring Expert 在线帮助。

Power SCADA Operation

EcoStruxure™ Power SCADA Operation 是一款专为大型设施和关键基础设施操作而设计的完整的实时监控和控制解决方案。

它与您的设备进行通讯,旨在实现数据采集和实时控制。您可使用 Power SCADA Operation 完成以下任务:

- 系统监管
- 实时和历史趋势、事件记录
- 基于个人电脑的自定义报警

有关如何将设备添加到系统中以进行数据收集和分析的说明,请参见 EcoStruxure™ Power SCADA Operation 在线帮助。

Modbus 命令接口

测量仪的大部分实时数据和记录数据,以及测量仪功能的基本配置和设置,均可使用测量仪的寄存器列表中列出的 Modbus 命令接口来进行访问和设定。

这是一种高级过程,只能由非常熟悉 Modbus、测量仪以及所监控的电力系统的用户来完成。有关 Modbus 命令接口的更多信息,请联系技术支持部门。

有关 Modbus 映射信息和命令接口的基本说明,请参见您测量仪的 Modbus 寄存器列表,网址为 www.se.com。

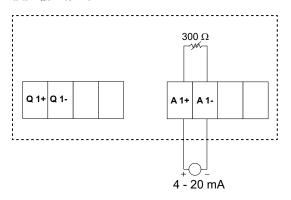
I/O 模块

注: 仅适用于 PM2130 型号测量仪

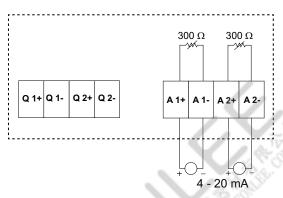
本节补充说明了可选 I/O 模块的安装工作表,并提供有关 I/O 模块的物理特征和功能的其它信息。

I/O 模块具有以下变型:

- 单通道模拟 I/O 模块
- 双通道模拟 I/O 模块
- 双通道数字 I/O 模块
- 双通道数字输入和继电器输出模块


模拟输入应用

模拟输入解释来自互感器的传入模拟电流信号。模拟 I/O 模块可使用标准 4 - 20 mA 模拟互感器测量电流。


对于模拟输入操作,测量仪接收模拟输入信号并提供处理后的缩放值。如果在输入端口上检测到开路,则模拟输入可能显示一个低于零的值。

您可以将模拟输入模式设置为电流传感。

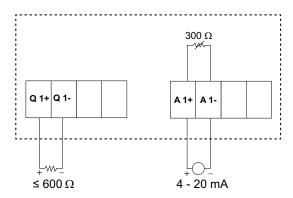
模拟输入接线

双模拟输入接线

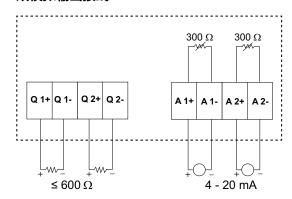
仅可以通过通讯在测量仪上配置以下模拟输入:

代码	单位	描述
0	- / 3	无单位
1	%	百分比
2	°C	摄氏度
3	°F	华氏度

代码	单位	描述
4	Deg	角度
5	Hz	赫兹
6	А	安培
7	kA	千安
8	V	伏特
9	kV	干伏
10	MV	兆伏
11	W	瓦特
12	kW	干瓦
13	MW	兆瓦
14	VAR	无功伏安
15	kVAR	无功千伏安
16	MVAR	无功兆伏安
17	VA	伏安
18	kVA	干伏安
19	MVA	兆伏安
20	WH	瓦时
21	kWH	千瓦时
22	MWH	兆瓦时
23	VARH	无功伏安小时
24	kVARH	无功千伏安小时
25	MVARH	无功兆伏安小时
26	VAH	伏安小时
27	kVAH	干伏安小时
28	MVAH	兆伏安小时
29	秒	秒
30	分钟	分钟
31	小时	小时
32	字节 (RAM)	字节
33	千字节 (RAM)	干字节
34	\$	美元
35	gal	加仑
36	gal/hr	加仑/小时
37	gal/min	加仑/分钟
38	cfm	立方英尺/分钟
39	PSI	PSI
40	BTU	вти
41	L	升
42	吨-小时	吨小时
43	l/hr	升小时
44	l/min	升/分钟


代码	单位	描述
45	€	欧元
46	毫秒	毫秒
47	m³	立方米
48	m³/sec	立方米/秒
49	m³/min	立方米/分钟
50	m³/hr	立方米/小时
51	Ра	帕斯卡
52	Bars	e
53	RPM	转/分钟
55	BTU/hr	BTU/小时
56	PSIG	磅/平方英寸表压
57	SCFM	标准立方英尺/分钟
58	MCF	干立方英尺
59	热量	热量
60	SCFH	标准立方英尺/小时
61	PSIA	磅/平方英寸绝对压力
62	lbs	磅
63	千克	干克
64	klbs	千磅
65	lb/hr	磅/小时
66	ton/hr	吨小时
67	kg/hr	千克/小时
68	in. Hg	英寸汞柱
69	kPa	干帕
70	%RH	相对湿度百分比
71	MPH	英里每小时
72	m/sec	米/秒
73	mV/cal/(cm²/min)	毫伏/卡/(平方厘米/分钟)
74	in	英寸
75	mm	毫米
76	GWH	干兆瓦小时
77	GVARH	无功干兆伏安小时
78	GVAH	干兆伏安小时
79	AH	安培小时
80	kAH	干安小时
81	Therm/hr	热量/小时

模拟输出应用


模拟 I/O 模块可以为标准的 4 - 20 mA 模拟互感器发送低电流。

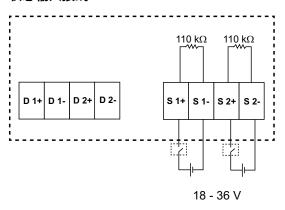
对于模拟输出操作,测量仪接收输入值并缩放至相应的信号值以发送至物理模拟输出端口。

模拟输出接线

双模拟输出接线

仅可以通过通讯在测量仪上配置以下模拟输出:

参数	描述
电流	电流:相值
	平均电流
	不平衡电流:相值
	最差不平衡电流
电压	线电压:相值
	平均线电压
	相电压:相值
	平均相电压
	不平衡线电压:相值
	最差不平衡线电压
	不平衡相电压:相值
	最差不平衡相电压
功率	有功功率:相值
	总有功功率
/ 1 h	无功功率:相值
\$ \$\dag{\psi}\$	总无功功率
/4//4	视在功率:相值
	总视在功率


参数	描述
PF	总功率因数
频率	频率

状态输入 (DI) 应用

状态输入通常用于监控外部触点或电路断路器的状态。

测量仪的状态输入需要使用外部电压源或湿性电压(在测量仪中提供)来探测状态输入的"开/关"状态。如果状态输入端的外部电压在其工作范围之内,则测量仪会检测到一个"开"状态。

状态输入接线

使用 ION Setup 配置状态输入

状态输入端口(S1和S2)可使用ION Setup来进行配置。

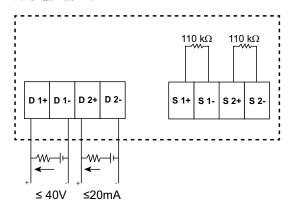
- 1. 启动 ION Setup。
- 2. 连接到您的测量仪。
- 3. 导航到 I/O configuration > I/O Setup。
- 4. 选择要配置的状态输入,然后单击 Edit。 系统将显示该状态输入的设置屏幕。
- 5. 为该状态输入的 Label 输入一个描述性名称。
- 6. 根据需要对其它设置参数进行配置。

7. 单击Send保存更改。

通过 ION Setup 提供的状态输入设置参数

参数	数值	描述
标签	_	使用此字段可更改默认标签以及为此状态输入指定描述性名称。
Control Mode	Normal, Demand Sync	此字段显示了状态输入如何发挥功能。 Normal:该状态输入与其他测量仪功能没有关联。测量仪按正常的方式对输入脉冲的数量进行计数和记录。 Demand Sync:该状态输入与其中一个输入同步需量函数有关联。测量仪使用输入脉冲来将其需量周期与外部源进行同步。
Debounce	0至9999	去抖是为机械接触抖动而补偿的时间延迟。使用此字段可以设置外部信号必须保持某种状态多长时间(单位为毫秒)才能被认为是发生了有效的状态更改。
Associations	_	如果状态输入已经与其他测量仪函数关联,则此字段显示其他信息。

数字输出应用


测量仪配备了 2 个数字输出端口 (D1 和 D2)。可以配置数字输出,以供以下应用场合使用:

开关应用,例如用于为电容器组、发电机和其它外部设备及装置提供开/关控制信号。

电能脉冲应用,此时接收设备通过对来自测量仪数字输出端口的 kWh 脉冲进行计数,从而确定电能使用情况。

单元、数字和标准报警配置。

数字输出接线

默认数字输出状态

I/O 插脚的默认数字输出状态为高(开关关闭)。可通过通讯更改 I/O 插脚的数字输出状态。

I/O 插脚状态	外部模式	报警	显示屏	通讯	开关
	0	0	关	0	开
/III	0	61 The filth	开	1	关
低	0	0	关	0	开
	1 3	0	开	1	关
高	0	0	关	0	关
	0	1	开	1	开
	0	0	关	0	关

EasyLogic™ PM2100 系列 I/O 模块

1 0 开	1	开
-------	---	---

数字输出的需量参数

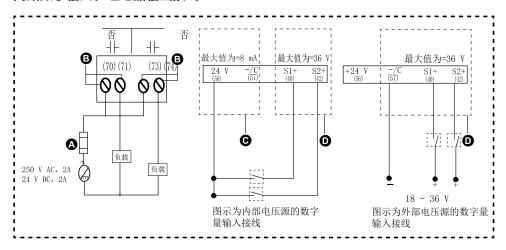
可根据超过设定的上限时的报警事件为数字输出配置相关的需量参数(当前需量(VA,W,VAR)、上一需量(VA,W,VAR)和预测需量(VA,W,VAR))。在特定的时间内只能设置一个需量参数。

注: 使用 ION setup 通过通讯完成报警设置。

使用 ION Setup 配置数字输出

您可使用 ION Setup 来配置数字输出。

- 1. 启动 ION Setup。
- 2. 连接到您的测量仪。
- 3. 导航到 I/O configuration > I/O Setup。
- 4. 选择要配置的数字输出,然后单击**编辑。** 系统将显示该数字输出的设置屏幕。
- 5. 在 Label 字段中为该数字输出输入一个描述性名称。
- 6. 根据需要对其它设置参数进行配置。
- 7. 单击Send保存更改。


可以使用 ION Setup 设置的数字输出设置参数

参数	数值	描述
标签	_	使用此字段可更改默认标签以及为此数字输出指定描述性名称。
Control Mode	External, Alarm, Energy	此字段显示了数字输出如何发挥功能。 External:该数字输出可通过软件或通过通讯发送的命令由 PLC 来进行远程控制。 Alarm:该数字输出与报警系统关联。测量仪在报警被触发时向数字输出端口发送一个脉冲。 Energy:该数字输出与电能脉冲相关联。选中此模式后,您可以选择电能参数,然后设置脉冲率(脉冲数kW)。
Behavior Mode	Normal, Timed, Coil Hold	 Normal: 当控制模式设置为 External 或 Alarm 时应用此模式。在触发外部模式的情况下,该数字输出保持为"开"状态,直到计算机或 PLC 发送"关"命令。在触发报警模式的情况下,数字输出保持为"开"状态,直到跨过退出点。 Timed:该数字输出在由"上电时间"设置寄存器定义的时间段内始终保持为"开"。 Coil Hold: 当控制模式设置为 External 或 Alarm 时应用此模式。对于与数字输出关联的单元报警,您必须将操作模式设置为绕组。该输出在收到"激励"命令时打开,在收到"绕组释放"命令时关闭。在控制电源断开的情况下,该输出记忆并返回到控制电源断开时所处的状态。
On Time (s)	0至9999	此设置定义了脉冲宽度(ON time),单位为秒。 注: 在电能模式下,数字输出脉冲"开"的时间被固定为 20 毫秒。
Select Alarms	所有可用的报警	当控制模式设置为报警时应用。选择一个或多个要监 控的报警。
Associations	- (如果数字输出已经与其它测量仪功能关联,此字段则 显示其它信息。

继电器输出应用

继电器输出可以配置为用于开关应用,例如用于为电容器组、发电机和外部设备及装置提供开/关控制信号。

两路数字输入和继电器输出接线

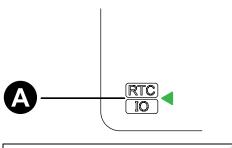
Α	过电流保护设备
В	继电器 1 (70, 71), 继电器 2 (73, 74)
С	激励输出 (56,57)
D	数字状态输入 (40,42,57)

使用 ION Setup 配置继电器输出

您可使用 ION Setup 来配置继电器输出端口(继电器 1 和继电器 2)。

- 1. 启动 ION Setup。
- 2. 连接到您的测量仪。
- 3. 导航到 I/O configuration > I/O Setup。
- 4. 选择要配置的继电器输出,然后单击 **Edit**。 系统将显示该继电器输出的设置屏幕。
- 5. 为该继电器输出的 Label 输入一个描述性名称。
- 6. 根据需要对其它设置参数进行配置。

EasyLogic™ PM2100 系列 I/O 模块


7. 单击Send保存更改。

通过 ION Setup 提供的继电器输出设置参数

参数	数值	描述
标签	_	使用此字段可更改默认标签以及为此继电器输出指定描述性名称。
Control Mode	External, Alarm	此字段显示了继电器输出如何发挥功能。 External:该继电器输出可通过软件或通过通讯 发送的命令由 PLC 来进行远程控制。 Alarm:该继电器输出与报警系统关联。测量仪 在报警被触发时向继电器输出端口发送一个脉 冲。
Behavior Mode	Normal, Timed, Coil Hold	 Normal: 当控制模式设置为 External 或 Alarm 时应用此模式。在触发外部模式的情况下,该继电器输出保持为关闭状态,直到计算机或 PLC 发送打开命令。在触发报警模式的情况下,继电器输出保持为关闭状态,直到跨过退出点。 Timed: 该继电器输出在由"上电时间"设置寄存器定义的时间段内始终保持为"开"。 Coil Hold: 当控制模式设置为 External 或 Alarm 时应用此模式。对于与继电器输出关联的单元报警,您必须将操作模式设置为绕组。该输出在收到"激励"命令时打开,在收到"绕组释放"命令时关闭。在控制电源断开的情况下,该输出记忆并返回到控制电源断开时所处的状态。
On Time (s)	0至9999	此设置定义了脉冲宽度(ON time),单位为秒。
Select Alarms	所有可用的报警	当控制模式设置为报警时应用。选择一个或多个要监 控的报警。
Associations	_	如果继电器输出已经与其他测量仪功能关联,此字段 则显示其他信息。

IO LED 指示灯

IO LED 指示灯提醒或通知您测量仪的 IO 活动。当 IO 模块连接到测量仪时,LED 以稳定的速度闪烁。

A IO LED 指示灯 (绿色)

报警

报警概述

注: 仅适用于 PM2130 型号测量仪

报警是测量仪在检测到报警条件时通知您的方式,比如超出正常工作条件的错误或事件。报警一般由设置点驱动并可以编程以监测您电气系统中特定的行为、事件或意外状况。

您可以将测量仪配置为,当测量仪的测量值或工作状态中探测到预定义事件时生成 并显示高、中和低优先级报警。测量仪还可以记录报警事件信息。

测量仪出厂时已启用了一些报警。在测量仪可生成报警之前,还需配置其他报警。

按需自定义测量仪报警,如更改优先事项。您还可以使用测量仪的高级功能创建自定义报警。

报警类型

测量仪支持很多不同的报警类型。

类型	METSEPM2KANLGIO22	METSEPM2KANLGIO22D	METSEPM2KANLGIO11	METSEPM2KANLGIO11D
仪表	4	4	4	4
数字	_	_	_	_
标准	23	23	23	23

类型	METSEPM2KDGTLIO22	METSEPM2KDGTLIO22D	METSEPM2K2DI2RO	METSEPM2K2DI2ROD
仪表	4	4	4	4
数字	2	2	2	2
标准	23	23	23	23

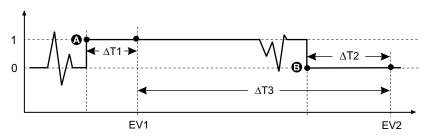
单元报警

单元报警是一种最简单的报警,可监控单一行为、事件或条件。

可用单元报警

测量仪设有一组 4 个单元报警。

报警标签	描述
表计上电	测量仪在控制电源断开后通电。
表计复位	测量仪出于任何原因复位。
表计诊断	测量仪的自我诊断功能检测到问题。
反相	测量仪检测到与预期不同的相序。
C (1) 43	


EasyLogic™ PM2100 系列

数字报警

数字报警监控测量仪数字/状态输入的"开"或"关"状态。

含设定值延时的数字报警

为防止不稳定的信号导致错误触发,您可以为数字报警设置触发延时和恢复延时。

А	触发设定值(1=开)	ΔΤ2	恢复延时(秒)
В	恢复设定值(0=关)	EV2	报警条件结束
ΔΤ1	触发延时(秒)	ΔΤ3	报警持续时间(秒)
EV1	报警条件开始		

注: 为防止使用误操作的报警触发事件填充报警日志,当数字输入/状态在1秒内更改状态超过4次或在10秒内更改超过10次时,系统将自动禁用数字报警。在这种情况下,您必须使用显示屏或ION Setup 重新启用报警。

可用数字报警

测量仪设有一组2个数字报警。

报警标签	描述
数字报警 S1	数字输入 1
数字报警 S2	数字输入 2

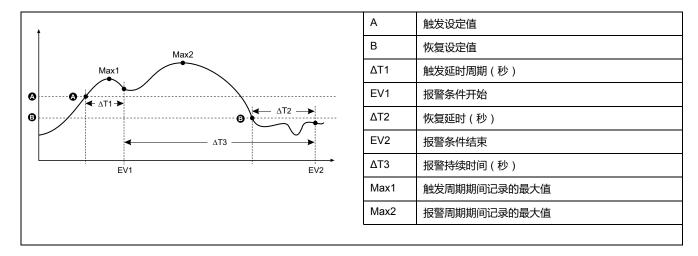
标准报警

标准报警是设定值驱动的报警,可以监控电力系统中的特定行为、事件或意外状况。

标准报警的检测率等于 50/60 测量仪周期,如果测量仪的频率设置配置为与系统频率 (50 或 60 Hz) 相匹配,则额定为 1 秒。

许多标准报警都是三相报警。三相中每相的报警设定值会分别予以评估,但将报警报告为单个报警。如果第一相超过报警触发幅值的时间达到触发延时,就会触发报警。只要任何相保持为报警状态,报警就是激活的。当最后一相低于恢复幅值的时间达到恢复延时的时候,就会发生报警恢复。

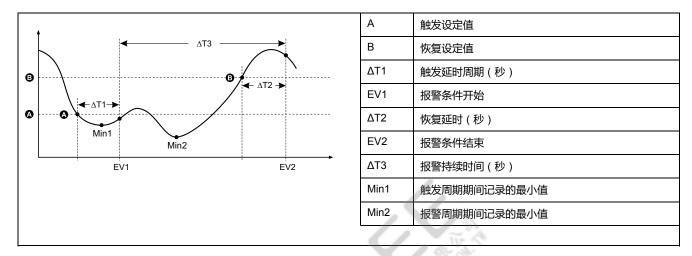
超出和低于设定值(标准)报警操作示例


测量仪支持超出和低于设定值标准报警条件。

当受监控信号的幅值超过触发设定值设置所指定的限值,且处于该状态的时间达到 触发延时设置所指定的最短时间时,即符合设定值条件。

当受监控信号的幅值超出恢复设定值设置所指定的限值,且处于该状态的时间达到恢复延时设置所指定的最短时间时,设定值条件便会结束。

超出设定值


当值超出触发设定值设置、且保持足够长的时间并达到触发延时周期 (ΔT1) 时,报警条件设置为"开"。当值低于恢复设定值设置、且保持足够长的时间并达到恢复延时周期 (ΔT2) 时,报警条件设置为"关"。

测量仪将记录报警事件开始 (EV1) 和结束 (EV2) 的日期与时间。此外,测量仪还将执行分配给事件的任何任务,例如操作数字输出。测量仪也将记录报警周期之前、之中或之后的最大值(Max1、Max2)。

低于设定值

当值下降并低于触发设定值设置、且保持足够长的时间并达到触发延时周期 ($\Delta T1$)时,报警条件设置为"开"。当值上升并高于恢复设定值设置、且保持足够长的时间并达到恢复延时周期 ($\Delta T2$)时,报警条件设置为"关"。

测量仪将记录报警事件开始 (EV1) 和结束 (EV2) 的日期与时间。此外,测量仪还将执行分配给事件的任何任务,例如操作数字输出。测量仪也将记录报警周期之前、之中或之后的最小值(Min1、Min2)。

允许的最大设定值

测量仪已经过编程设定,可防止用户数据出现输入错误,并设置了标准报警的限值。

您可以为某些标准报警输入的最大设定值取决于出厂时编程设定的电压互感器变比(VT 变比)、电流互感器变比(CT 变比)、系统类型(如相数)和域最大电压限值和最大电流限值。

 $oldsymbol{\dot{z}}$: VT 变比是指 VT 一次电路除以 VT 二次电路,CT 变比是指 CT 一次电路除以 CT 二次电路。

标准报警	最大设定值
过流相位	(最大电流)x(CT 变比)
欠流相位	(最大电流)x(CT 变比)
线电压欠压	(最大电压)x(VT 变比)
相电压过压	(最大电压)x(VT 变比)
相电压欠压	(最大电压)x(VT 变比)
过有功功率	(最大电压)x(最大电流)x(相数)
过无功功率	(最大电压)x(最大电流)x(相数)
过视在功率	(最大电压)x(最大电流)x(相数)
当前过有功功率需量	(最大电压)x(最大电流)x(相数)
上次过有功功率需量	(最大电压)x(最大电流)x(相数)
预测过有功功率需量	(最大电压)x(最大电流)x(相数)
当前过无功功率需量	(最大电压)x(最大电流)x(相数)
上次过无功功率需量	(最大电压)x(最大电流)x(相数)
预测过无功功率需量	(最大电压)x(最大电流)x(相数)
当前过视在功率需量	(最大电压)x(最大电流)x(相数)
上次过视在功率需量	(最大电压)x(最大电流)x(相数)
预测过视在功率需量	(最大电压)x(最大电流)x(相数)

可用标准报警

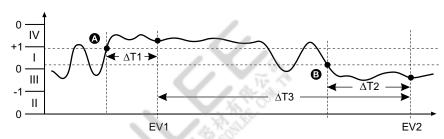
测量仪设有一组标准报警。

注: 有些报警不适用于所有电力系统配置。例如,无法在三相三角形系统中启用相电压报警。某些报警使用系统类型和电压互感器变比或电流互感器变比来确定允许的最大设定值。

报警标签	有效范围和分辨率	حد مم
ION Setup	ION Setup	单位
Over Phase Current	0.000至9999.000	A
Under Phase Current	0.000至9999.000	A
Over Voltage L-L	0.00至99999.00	V
Under Voltage L-L	0.00至99999.00	V
Over Voltage L-N	0.00至99999.00	V
Under Voltage L-N	0.00 至 999999.00	V
Over Active Power	0.0至 9999999.0	kW
Over Reactive Power	0.0 至 9999999.0	kVAR
Over Apparent Power	0.0 至 9999999.0	kVA
Leading True PF	-1.00 至 -0.01 和 0.01 至 1.00	_
Lagging True PF	-1.00至-0.01和 0.01至 1.00	_

报警标签	有效范围和分辨率	*
ION Setup	ION Setup	 - 单位
Over Frequency	0.000 至 99.000	Hz
Under Frequency	0.000 至 99.000	Hz
Over Voltage THD	0.000 至 99	%
Over Present Active Power Demand	0.0 至 9999999.0	kW
Over Last Active Power Demand	0.0 至 9999999.0	kW
Over Predicted Active Power Demand	0.0 至 9999999.0	kW
Over Present Reactive Power Demand	0.0 至 9999999.0	kVAR
Over Last Reactive Power Demand	0.0 至 9999999.0	kVAR
Over Predicted Reactive Power Demand	0.0 至 9999999.0	kVAR
Over Present Apparent Power Demand	0.0 至 9999999.0	kVA
Over Last Apparent Power Demand	0.0 至 9999999.0	kVA
Over Predicted Apparent Power Demand	0.0至9999999.0	kVA

功率因数 (PF) 报警

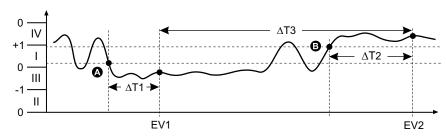

您可以设置"超前 PF"或"滞后 PF"报警,以监控电路的功率因数何时超出或低于您指定的阈值。

"超前 PF"或"滞后 PF"报警使用功率因数的四个象限作为 y 轴上的值,其中象限 Ⅱ 作为标度的最低值,接下来是象限 Ⅲ 和象限 Ⅰ,最后一个是象限 Ⅳ(是标度的最高值)。

象限	PF值	超前/滞后
II	0至-1	超前(电容)
III	-1至-0	滞后(电感)
I	0至1	滞后(电感)
IV	1至0	超前(电容)

超前 PF 报警

"超前 PF"报警监控超出设定值的条件。



Α	触发设定值	ΔΤ2	恢复延时 (秒)
В	恢复设定值	EV2	报警条件结束
ΔΤ1	触发延时周期(秒)	ΔΤ3	报警持续时间(秒)
EV1	报警条件开始		

EasyLogic™ PM2100 系列 报警

滞后 PF 报警

"滞后 PF"报警监控低于设定值的条件。

Α	触发设定值	ΔΤ2	恢复延时 (秒)
В	恢复设定值	EV2	报警条件结束
ΔΤ1	触发延时周期(秒)	ΔΤ3	报警持续时间(秒)
EV1	报警条件开始		_

报警优先级

每个报警均有优先级,可以用于区分需要立即处理的事件和无需处理的事件。

报警优先级	报警显示通知和记录方法	
	警报指示灯	报警记录
高	当报警激活时闪烁。	记录在报警日志中。
中	当报警激活时闪烁。	记录在报警日志中。
低	当报警激活时闪烁。	记录在报警日志中。
无	无变化	仅记录在事件日志中。

注: 只有当报警电能脉冲指示灯配置为用于报警时才会出现报警指示灯通知。

报警设置概述

您可以使用 ION Setup 来配置单元报警、数字报警或标准 (1秒)报警。

如果您对测量仪的基本设置进行了更改,则所有报警都将被禁用以防触发不必要的报警操作。

注意

不符合设计意图的设备操作

- 验证所有设置是否正确,必要时进行调整。
- 重新启用所有已配置的报警。

若不遵循这些说明,可能会导致报警功能无法正常工作。

内置错误检查

ION Setup 将自动检查不正确的设置组合。启用报警时,您必须先将触发和恢复限值设置为可接受的值,然后才能退出设置屏幕。

使用 ION Setup 设置报警

您可以使用 ION Setup 来创建和设置报警。

- 1. 启动 ION Setup 并连接至您的测量仪。
- 2. 打开Alarming屏幕。
- 3. 选择要配置的报警,然后单击Edit。
- 4. 按照不同的报警设置部分中的说明,配置设置参数。 有关更多信息,请参阅ION Setup"Device Configuration Guide"。

单元报警设置参数

根据需要对单元报警设置参数进行配置。

ION Setup 控件如括号中所示。

设置	选项或范围	描述
启动	是(选中)或否(清除)	此设置将启用或禁用报警。
优先级	高、中、低、无	此选项设置报警的优先级和通知选项。
选择数字输出(输出)	无	选择触发报警时要控制的数字输出。
	数字输出 D1	
	数字输出 D2	
	数字输出 D1 和 D2	
行为	正常	选择所需的行为模式
	定时	注 : 选择正常值时不会触发数字输出
	绕阻	

数字报警设置参数

根据需要对数字报警设置参数进行配置。

ION Setup 控件如括号中所示。

设置	选项或范围	描述
启动	是(选中)或否(清除)	此设置将启用或禁用报警。
优先级	高、中、低、无	此选项设置报警的优先级和通知选项。
触发设定值(设定值触发)	开、关	使用此设置可根据数字输入的状态("开"或"关")控制何时触发报警。
触发延时(延时)	0至999999	此设置指定触发报警之前,数字输入必须处 于报警触发状态的秒数。
恢复延时(设定值恢复延时)	0至999999	此设置指定报警关闭之前,数字输入必须超 出报警触发状态的秒数。
选择数字输出(输出)	无	选择触发报警时要控制的数字输出。
	数字输出 D1	
	数字输出 D2	
	数字输出 D1 和 D2	

EasyLogic™ PM2100 系列

标准(1秒)报警的设置参数

根据需要对标准报警设置参数进行配置。

ION Setup 控件如括号中所示。

注: 建议您使用 ION Setup 来配置标准(1秒)报警。ION Setup 支持更高的分辨率,使您能够在为特定测量设置触发设定值和恢复设定值时指定多个小数位。

设置	选项或范围	描述
启动	是(选中)或否(清除)	此设置将启用或禁用报警。
优先级	高、中、低、无	此选项设置报警的优先级和通知选项。
触发设定值 mA(触发限值)	根据正在设置的标准报警而有所不同	这是您定义为触发报警的设定值限值的值 (幅值)。对于"超出"条件,这意味着该值 已超出触发限值。对于"低于"的条件,这意 味着该值已低于触发限值。
触发延时(延时)	0至999999	此设置指定在触发报警之前,信号必须始终超过(对于"超出"条件)或低于(对于"低于"条件)触发设定值的秒数。
恢复设定值 mA(恢复限值)	根据正在设置的标准报警而有所不同	这是您定义为恢复报警条件的限值的值(幅值)。对于"超出"条件,这意味着该值已低于恢复限值。对于"低于"条件,这意味着该值已超过触发限值。
恢复延时(延时)	0至999999	此项设置指定在报警条件结束之前,信号必须始终低于(对于"超出"条件)或超过(对于"低于"条件)恢复设定值的秒数。
触发设定点提前滞后(提前、滞后)	"超前"或"滞后"	仅适用于 PF(功率因数)报警。使用此项可设置 PF 值和象限,以便为超出(PF 超前)或低于(PF 滞后)PF 条件设置触发设定值。
恢复设定点提前滞后(提前、滞后)	"超前"或"滞后"	仅适用于 PF(功率因数)报警。使用此项可设置 PF 值和象限,为超出(PF 超前)或低于(PF 滞后)PF 条件设置恢复设定值。
选择数字输出(输出)	无	选择触发报警时要控制的数字输出。
	数字输出 D1	
	数字输出 D2	
	数字输出 D1 和 D2	

指示灯报警指示器

你可以将测量仪的报警中能脉冲指示灯作为报警指示器。

当设置为检测报警时,该指示灯闪烁则表示存在报警状况。

使用 ION Setup 配置报警指示灯

您可以使用 ION Setup 来为报警配置测量仪指示灯。

- 1. 打开 ION Setup 并连接至您的测量仪。有关说明,请参见 ION Setup 帮助。
- 2. 导航至Energy Pulsing。
- 3. 选择Front Panel LED, 然后单击Edit。
- 4. 将控制模式设置为Alarm并单击OK。
- 5. 单击Send保存更改。

报警计数器

测量仪将对每次出现的每种报警进行计数和记录。

报警滚动值

达到值 9999 之后,报警计数器将翻滚回 0。

EasyLogic™ PM2100 系列

测量仪记录

查看概述

本章简要介绍测量仪的下述日志:

- 报警日志
- 用户定义的数据日志

日志是指储存在测量仪的永久性存储器中的文件,也称为"本体日志"。

设置数据日志

您可选择在数据日志中记录 2 个项目,并可选择这些值的更新频率(记录间隔)。 使用 ION Setup 可配置数据记录。

注意

数据丢失

在配置前,请保存数据日志的内容。

若不遵循这些说明,可能会导致数据丢失。

- 1. 启动 ION Setup 并在设置屏幕模式下(View > Setup Screens)打开测量仪。有关说明,请参见 ION Setup 帮助。
- 2. 双击 Data Log #1。
- 3. 设置记录频率和要记录的测量值数据。
- 4. 单击 Send 将更改保存至测量仪。

参数	数值	描述
Status	Enable, Disable	设置此参数以启用或禁用测 量仪中的数据记录功能。
Interval	15 分钟、30 分钟、60 分钟	选择设置记录频率的时间 值。
Channels	根据测量仪类型的不同,可记录的项目会有所不同。	从"Available"列中选择要记录的项,然后单击双向右箭头按钮,将该项目移动到 "Selected"列。
		要删除某个项目,请从 "Selected"列中选择此项目, 然后单击双向左箭头按钮。

使用 ION Setup 保存数据日志内容

您可使用 ION Setup 来保存数据日志的内容。

- 1. 启动 ION Setup,并在数据屏幕模式(View > Data Screens)中打开测量仪。有关说明,请参见 ION Setup 帮助。
- 2. 双击 Data Log #1 以检索记录。

3. 记录上传完成之后,右键单击查看器中的任意位置,并从弹出菜单中选择 Export CSV,以导出整个日志。

注: 要仅导出日志中的选定记录,请单击要导出的第一条记录,按 Shift 键并单击要导出的最后一第记录,然后从弹出菜单中选择 Export CSV。

4. 导航至要保存数据日志文件的文件夹,然后单击 Save。

报警日志

报警记录存储在测量仪的报警历史记录中。

测量仪默认可以记录发生的任意报警条件。每次出现报警时,就会进入报警日志。 测量仪中的报警日志储存报警的触发点和恢复点,以及与这些报警相关的日期和时间。您可以查看报警日志或将其存储到磁盘上,并复位警报日志以从测量仪内存中 清除数据。

测量仪将警报日志数据存储在永久性存储器中。报警日志长度固定为40个记录。

测量仪复位

测量仪复位

您可以利用复位清除储存在测量仪上的各种累计的参数,或重新初始化测量仪或测量仪配件。

测量仪复位将清除测量仪上的本体数据日志和其他相关信息。复位通常在对测量仪的基本设置参数(比如频率、VT/PT 或 CT 设置)进行更改之后执行,从而清除无效或过时的数据以做好将测量仪投入使用的准备。

测量仪初始化

测量仪初始化是一个特殊命令,可以清除测量仪的电能、功率、需量值和测量仪操 作计时器。

完成测量仪配置后,通常需要初始化测量仪,然后才能将它添加到电能管理系统中。

配置好所有测量仪设置参数后,在导航到各个测量仪显示屏屏幕,并确认显示的数据有效后执行测量仪初始化。

注: 可以使用 ION Setup 和安全命令接口执行测量仪初始化。

使用 ION Setup 执行复位

复位允许您清除特定类型的所有数据,比如所有电能值或所有最小最大值。

- 1. 启动 ION Setup。
- 2. 连接到您的测量仪。
- 3. 导航至Meter Resets。
- 4. 选择要复位的参数,然后单击Reset。 已选择的参数值将被清除。

复位参数

选项	描述
Meter Initialization	清除此表所列出的全部数据。
Min/Max	清除所有最小值和最大值寄存器。
Active Load Timer	复位所有有功负荷计时器日志。
Demands	清除所有需量寄存器。
Peak Demands	清除所有峰值需量值。
Energies	清除所有累计的电能值(kWh、kVARh、kVAh)和运行小时数。
Digital Outputs	清除所有数字输出值。
Digital Output Counters	清除所有数字输出计数器。
Digital Output On Times	清除时间日志上的所有数字输出。
Status Input Counters	清除所有输入计数器。
Status Input On Times	清除时间日志上的所有输入。
Alarm Counters	清除所有报警计数器和报警日志。
Data Log #1	清除所有数据日志。

测量和计算

实时读数

测量仪可测量电流和电压,并实时报告所有3相及零线的RMS(均方根)值。

电压和电流输入量以每个周期 64 个样本的采样率进行持续监控。此解算量有助于测量仪能够为各种商业、建筑和工业等应用提供可靠的测量值和计算电气值。

电能测量

该测量仪可提供完全双向的 4 象限电能测量功能。

该测量仪将所有累计的有功、无功和视在电能计量存储在永久性存储器中:

- kWh、kVARh、kVAh(流出值)
- kWh、kVARh、kVAh(流入值)
- kWh、kVARh、kVAh 净值(流出 流入)
- kWh、kVARh、kVAh 绝对值(流出+流入)

所有电能参数均表示所有3相的总和。

注:根据电能刻度选择,当电能参数的 kWh、kVARh、kVAh(已交付)或 kWh、kVARh、kVAh(已接收)的值在 999999999.999 处溢出时,所有电能参数值都会复位。

基于象限的 VARh

注: 仅适用于 PM2120/PM2130 型号测量仪。

基于象限的无功功率值仅在通讯上可用。这些无功电能相对于 Q1、Q2、Q3 和 Q4 象限。

在通讯上基于象限的无功电能记录如下:

- Q1(00至90度)=Q1VARh,流出
- Q2 (90 至 180 度) = Q2 VARh,流出
- Q3(180至270度) = Q3 VARh, 流入
- Q4(270至360度) = Q4 VARh, 流入

清除电能值时将清除所有基于象限的 VARh 值。

最小最大值

当读数达到其最低或最高值时,测量仪更新并将这些最小/最大值保存在永久性存储器中。

50 Hz 系统的测量仪实时读数每 50 个周期更新一次,而 60 Hz 系统的测量仪实时读数每 60 个周期更新一次。

功率需量

功率需量是固定时段内平均功耗的度量。

注: 如未指定,则提及需量时假定为平均功率需量。

EasyLogic™ PM2100 系列 测量和计算

测量仪可以测量瞬时功耗并能够使用各种方法来计算需量。

功率需量计算方法

使用指定时段内累计的电能除以该时段的长度即可计算得出功率需量。

测量仪如何执行此计算取决于您选择的方法和时间参数(例如,带有 15 分钟间隔和 5 分钟次间隔的定时滚动区块需量)。

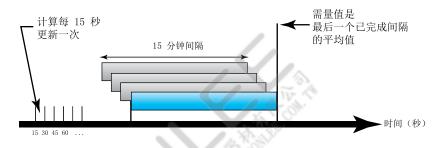
为了与公共电力部门计费兼容,测量仪提供了下列类型的功率需量计算方法:

- 区块间隔需量
- 同步需量
- 热需量

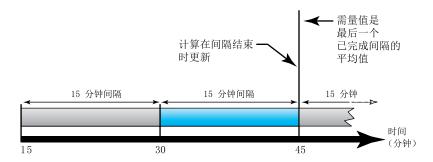
您可以从显示屏或软件中来配置功率需量计算方法。

区块间隔需量

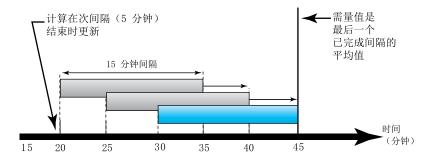
对于区块间隔需量方法类型,需要指定测量仪用于需量计算的一段时间间隔(或区块)。


选择/配置测量仪如何处理该间隔,有下列方法可供选择:

类型	描述
定时滑动区块	选择从 1 到 60 分钟的一个间隔(增量为 1 分钟)。如果间隔介于 1至 15 分钟之间,则需量计算每 15 秒更新一次。如果间隔介于 16 至 60 分钟之间,则需量计算每 60 秒更新一次。测量仪显示最后一个完成间隔的需量值。
定时区块	选择从 1 到 60 分钟的一个间隔(增量为 1 分钟)。测量仪在各个间隔结束时计算并更新需量。
定时滚动区块	选择间隔和次间隔。次间隔必须是间隔的均分值(例如,15分钟间隔分为3个5分钟的次间隔)。需量在每个次间隔结束时更新。测量仪显示最后一个完成间隔的需量值。


区块间隔需量示例

下列示图显示了使用区块间隔方法计算功率需量的各种方式。在本示例中,间隔设置为 15 分钟。


定时滑动区块

定时区块

定时滚动区块

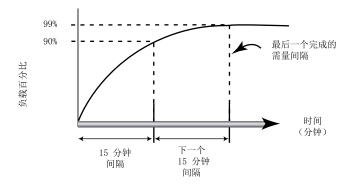
同步需量

您可以使用外部脉冲输入、通过通讯发送的命令或设备内部的实时时钟来将需量计算配置成同步进行。

类型	描述
命令同步需量	此方法允许您同步通讯网络上的多个测量仪的需量间隔。例如,如果可编程逻辑控制器 (PLC) 输入正在监控公共事业部门电力收费测量仪上需量间隔结束时的脉冲,则您可以对 PLC 进行编程,使电力收费测量仪只要开始新的需量间隔,PLC 就会向多个测量仪发出命令。每次发出命令时,各个测量仪的需量读数都对同一间隔进行计算。
时钟同步需量	此方法允许您将需量间隔同步到测量仪的内部实时时钟。这样有助于您将需量同步到某个特定时间,通常是在整点上(例如,上午 12:00 点)。如果您选择其它日期时间对需量间隔进行同步,则必须指定以分钟为单位从凌晨算起的时间。例如,要在上午 8:00 进行同步,则选择 480 分钟。

注: 对于这些需量类型,您可以选择区块或滚动区块选项。如果选择滚动区块需量选项,则需要指定次间隔。

热需量


热需量是基于热量反应来计算需量,它模拟的是热需量测量仪的功能。

该需量计算在每个间隔结束时更新。您可将该需量间隔设置为 1 到 60 分钟(增量为 1 分钟)。

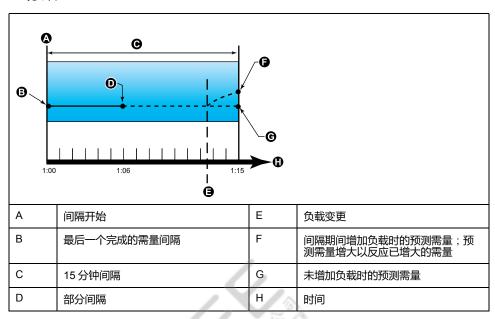
热需量示例

下列图示说明了热量需量计算。在本示例中,间隔设置为 15 分钟。该间隔是时间轴上移动的一段时间范围。计算在每个间隔结束时更新。

EasyLogic™ PM2100 系列 测量和计算

电流需量

测量仪使用区块间隔、同步或热需量法来计算电流需量。


您可将该需量间隔设置为 1 到 60 分钟,增量为 1 分钟(例如,15 分钟)。

预测需量

测量仪在 kW、kVAR 和 kVA 需量的当前间隔结束时计算预测需量,这种预测考虑了当前(部分)间隔范围内到目前为止的电能消耗和当前的消耗速率。

预测需量会按照测量仪的更新率更新。

下列图示显示负载的变更如何影响该间隔的预测需量。在本示例中,间隔设置为 15 分钟。

峰值需量

测量仪记录 kWD、kVARD 和 kVAD 功率(或峰值需量)的峰值(或最大值)。

各个值的峰值是测量仪自上次复位以来的最高平均读数。这些数值记录在测量仪的永久性存储器中。

测量仪还存储出现峰值需量时的日期和时间。

时钟

测量仪支持有功负荷计时器、测量仪操作计时器和负载运行小时数。

有功负荷计时器

有功负荷计时器根据您为负荷计时器的设定值设置所指定的最小电流,显示负荷已运行多长时间。

仅可通过通讯读取有效负荷计时器数据。

测量仪运行计时器

测量仪操作计时器显示测量仪已通电的时间。

负载运行小时数

负载运行小时数根据流出和流入累计电能值显示负荷已经运行的时间。

负载运行小时数计数器位于诊断页面中。运行小时数显示为 6 位数的小时数和 2 位数的分钟数。这些运行小时数计数器应与能量值一同复位。

电能质量

谐波概述

本章节描述测量仪的电力质量功能以及如何访问电力质量数据。该测量仪可以测量高达 15 次和 31 次的电压和电流谐波,并能计算总谐波失真 (THD%)。

谐波是电力系统基本频率的整数倍。谐波信息需要符合系统电力质量标准(例如 EN50160)和测量仪电力质量标准(例如 IEC 61000-4-30)。

测量仪测量相对于基本频率的基波和高次谐波。测量仪的电力系统设置可以定义当前各相并确定如何计算线电压或相电压谐波和电流谐波。

谐波用于指示提供的系统电力是否满足所需的电力质量标准或非线性负荷是否正在 对电力系统造成影响。电力系统谐波可引起零线带电和设备损坏,例如电机变热。 可使用电力调节器或谐波过滤器来将不必要的谐波最小化。

总谐波失真%

总谐波失真 (THD%) 是电力系统中存在的各相电压或电流总谐波失真的度量。

THD% 为衡量波形质量提供了一个常用指标。系统将计算各相的电压和电流 THD%。

谐波分量计算

谐波成分(Hc)等于电力系统中一相的所有非基波分量的均方根值。

测量仪使用下列方程来计算 Hc:

$$HC = \sqrt{(H_2)^2 + (H_3)^2 + (H_4)^2 \dots}$$

THD% 计算

THD% 是波形中存在的总失真的快速度量,为谐波成分 (H_C) 与基波 (H_1) 之比。默认时,测量仪使用下列方程来计算 THD%:

THD =
$$\frac{H_C}{H_1} \times 100\%$$

显示谐波数据

测量仪前面板上显示电压和电流 THD% 数据,而每相 THD%数据可以通过通讯读取。

- 1. 按"确定"按钮导航到相参数。
- 2. 按"向下"按钮查看 V_{THD} 和 I_{THD} 值。

注

LED 行显示 V_{THD} 值的 V1_{THD}、V2_{THD} 和 V3_{THD} 和 I_{THD} 值的 A1_{THD}、A2_{THD} 和 A3_{THD}。

维护与升级

维护概述

该测量仪不包含任何用户可维修的零部件。如果测量仪需要维修,请联系当地的 Schneider Electric 技术支持部门代表。

注意

测量仪损坏

- 请勿打开测量仪外壳。
- 请勿试图修理测量仪的任何部件。

不遵循上述说明可能导致设备损坏。

请勿打开测量仪。打开测量仪会使保修失效。

排除 LED 指示灯的故障

异常的心跳/串行通讯 LED 指示灯行为可能意味着测量仪存在潜在问题。

问题	可能的原因	可能的解决方案
当主机计算机发送数据时, LED 指示灯的闪烁速率没有发 生变化。	通讯接线	如果使用串行至 RS-485 转换器,则跟踪并检查从计算机至测量仪的所有接线是否正确端接。
	内部硬件问题	执行硬复位操作:关闭测量仪 的控制电源,然后重新接通电 源。如果问题仍然存在,请与 Technical Support联系。
心跳/串行通讯 LED 指示灯持续点亮,而不是亮灭闪烁。	内部硬件问题	执行硬复位操作:关闭测量仪的控制电源,然后重新接通电源。如果问题仍然存在,请与Technical Support联系。
心跳:串行通讯 LED 指示灯闪 烁,但显示屏无显示。	未正确设置显示屏的设置参数	检查显示屏参数设置。

如果进行故障排除之后问题仍未解决,请联系技术支持部门寻求帮助,并确保提供测量仪的固件版本、型号和序列号信息。

测量仪存储器

测量仪将配置和记录信息储存在永久性存储器和长寿命存储器芯片中。 测量仪使用永久性存储器 (NVRAM) 来保存所有数据和计量配置值。

测量仪电池

断电时测量仪内置电池可维持测量仪时钟运行,以保证测量仪计时不中断。 在温度为 25°C 的典型工作条件下,测量仪内置电池的预期寿命超过 10年。

EasyLogic™ PM2100 系列 维护与升级

查看固件版本、型号和序列号

您可以从显示屏面板查看测量仪的固件版本、型号和序列号:

- 1. 同时按住"向下"和"确定"按钮持续 2 秒,进入诊断页面。测量仪显示屏上的所有 LED 打开。
- 2. 按"向下"按钮查看测量仪的型号、序列号、操作系统版本和 RS 版本。
- 3. 同时按住"向下"和"确定"按钮持续2秒,退出诊断页面。

固件升级

升级测量仪固件的原因有很多。

- 提高测量仪的性能(例如,优化处理速度)
- 增强测量仪的现有特性与功能
- 为测量仪添加新功能
- 遵循日益严苛的行业新标准

技术协助

请务必在您的电子邮件中列出测量仪的型号、序列号和固件版本,或在呼叫技术支持部门时准备好这些信息。

验证精度

查看测量仪精度

所有测量仪均已在工厂根据国际电工委员会 (IEC) 和电气与电子工程师学会 (IEEE) 的标准进行过测试和验证。

您的测量仪不需要重新校准。但是,在某些安装中,需要对测量仪进行最终的精度 验证,尤其是测量仪用于营业收费或计费应用的情况。

精度测试要求

测试测量仪精度的最常见方法是应用来自稳定电源的测试电压和电流,然后将测量仪的读数与参考设备或电能标准的读数进行比较。

信号和电源

测量仪可在电压和电流信号源发生变化时维持精度,但是其电能脉冲输出需要稳定的测试信号才能有助于生成准确的测试脉冲。每次调整电源之后,测量仪的电能脉冲机制需要大约 10 秒的时间才能达到稳定状态。

测量仪必须连接到控制电源才能执行精度验证测试。有关电源规格的信息,请参考测量仪的安装文档。

AA危险

电击、爆炸或弧光的危险

检查确保设备电源符合设备电源的规格。

未按说明操作将导致人身伤亡等严重后果。

控制设备

需要使用控制设备来对从电能脉冲 LED 产生的脉冲输进行计数和计时。

- 大多数标准测试工作台都带有配备了光传感器的支架,以便检测 LED 脉冲 (光电二极管电路将检测到的光转换为电压信号)。
- 参考设备或电能标准通常都具有数字输入,可检测来自外部源(即测量仪的脉冲输出)的脉冲并为其计数。

注: 强烈的环境光源(例如相机闪光灯、荧光灯管、日光反射、探照灯等)会 对测试工作台上的光学传感器造成干扰。这样可能会导致测试错误。请根据需 要使用防护罩来遮挡环境光源。

环境

测量仪应在与测试设备相同的温度下进行测试。理想温度大约为23°C (73°F)。 请确保测量仪在测试之前已充分预热。

建议您在开始电能精度验证测试之前,进行 30 分钟的预热。在工厂中,测量仪在进行校准之前均已预热至典型的工作温度,以确保测量仪在工作温度下能够达到最佳精度。

大多数高精度电子设备在达到指定的性能级别之前,均需要预热时间。电能测量仪标准允许制造商根据环境温度变化和自身发热情况来指定测量仪精度降级的程度。

您的测量仪符合并满足上述电能测量仪标准的要求。

有关您的测量仪符合的精度标准的列表,请与当地的Schneider Electric代表联系,或从 www.se.com 下载测量仪手册。

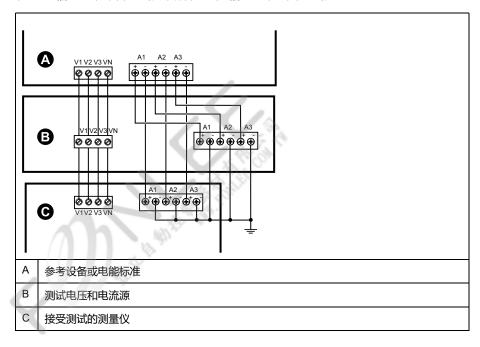
参考设备或电能标准

要帮助确保测试的精度,建议您使用指定精度高于所测试测量仪 6 至 10 倍的参考设备或参考电能标准。进行测试之前,参考设备或电能标准应按照制造商的建议进行预热。

注: 验证精度测试中使用的所有测量设备(例如电压表、安培表、功率因数表)的精度和准确度。

验证精度测试

下述测试作为测量仪精度测试指南;您的测量仪商店可能会提供特定的测试方法。


▲▲危险

电击、爆炸或弧光的危险

- 请穿戴好人员保护设备 (PPE),并遵守电气操作安全规程。请参考 NFPA 70E、CSA Z462 或其他当地标准。
- 对设备进行操作或者在设备内操作之前,请关闭该装置和将该装置安装在其内的设备的所有电源。
- 务必使用额定电压值正确的电压感应设备,以确认所有电源均已关闭。
- 切勿超过本设备的最大额定值。
- 检查确保设备电源符合设备电源的规格。

未按说明操作将导致人身伤亡等严重后果。

- 对装置或设备进行操作之前,请关闭该装置和将该装置安装在其内的设备的所有申源。
- 2. 使用额定电压值正确的电压感应设备,以确认所有电源均已关闭。
- 3. 将测试电压和电流源连接到参考设备或电能标准。请确保所测试的测量仪的所有电压输入均为并行连接,所有电流输入均为串行连接。

4. 使用以下其中一种方法连接用于为标准输出脉冲计数的控制设备:

选项	描述	
电能脉冲 LED	将标准测试工作台支架上的红色光传感器对准电能脉冲 LED。	
脉冲输出	将测量仪的脉冲输出连接到标准测试工作台的脉冲计数连接。	

注: 选择要使用的方法时,请注意,电能脉冲 LED 与脉冲输出的脉冲率限值不同。

- 5. 执行验证测试之前,请使用测试设备接通测量仪的电源,并通电至少 30 秒的时间。这样将有助于稳定测量仪的内部电路系统。
- 6. 配置验证精度测试的测量仪参数。
- 7. 根据为电能脉冲计数选定的方法,配置测量仪的电能脉冲 LED 或其中一项脉冲输出以执行电能脉冲。设置测量仪的电能脉冲常量,以便与参考测试设备同步。
- 8. 针对测试点执行精度验证。将每个测试点运行至少 30 秒的时间,以便使测试工作台设备能够读取足够数量的脉冲。测试点之间应留出 10 秒的停止时间。

精度验证测试所需的脉冲计算

精度验证测试设备通常要求指定特定测试期所需的脉冲数量。

参考测试设备通常要求您指定持续时间为"t"秒的测试期所需的脉冲数量。通常,所需的脉冲数量至少为 25 个脉冲,测试持续时间大于 30 秒。

使用以下公式计算所需的脉冲数量:

脉冲数量 = P总 x K x t/3600

其中:

- P总 = 总瞬时功率 (单位为千瓦 (kW))
- K = 测量仪的脉冲常量设置(单位为每 kWh 脉冲数)
- t = 测试持续时间(单位为秒,通常大于30秒)

精度验证测试所需的总功率计算

精度验证测试为电能参考/标准和接受测试的测量仪提供相同的测试信号(总功率)。

按照如下所示计算总功率,其中:

- P总 = 总瞬时功率 (单位为干瓦 (kW))
- VLN = 测试点的相电压单位为伏特(V)
- I=测试点的电流单位为安培(A)
- PF = 功率因数

计算的结果将四舍五入为最接近的整数。

对于平衡的3相星形系统:

P总 = 3 x VLN x I x PF x 1 kW/1000 W

注: 平衡的 3 相系统假定所有相的电压、电流和功率因数值均相同。

对于单相系统:

P总 = VLN x I x PF x 1 kW/1000W

精度验证测试所需的错误百分比计算

精度验证测试需要计算接受测试的测量仪和参考标准值之间的错误百分比。

使用以下公式计算每个测试点的错误百分比:

电能错误 = (EM - ES) / ES x 100%

其中:

- EM = 通过所测试的测量仪测量到的电能
- ES = 通过参考设备或电能标准测量到的电能

注: 如果精度验证显示测量仪不精确,则这些结果可能是由典型的测试误差源造成。如果未发现测试误差源,请与当地的Schneider Electric代表联系。

精度验证测试点

测量仪应在满载和轻负载以及滞后(电感)功率因数的条件下进行测试,以便确保能够测试测量仪的整个量程范围。

测试电流和电压输入额定值均已在测量仪上标出。有关测量仪的额定电流、电压和频率规格,请参阅安装说明书或数据表。

瓦时测试点	精度验证测试点示例	
满载	额定电流的 100% 至 200%,额定电压和额定频率的 100%,单位功率因数或功率因数为一 (1)。	
轻负载	额定电流的 10%,额定电压和额定频率的 100%,单位功率因数或功率因数为一 (1)。	
电感负载 (滞后功率因数)	额定电流的 100%,额定电压和额定频率的 100%,0.50 滞后功率因数 (电流滞后电压 60°相角)。	

无功时测试点	精度验证测试点示例	
满载	额定电流的 100% 至 200%,额定电压和额定频率的 100%,0 功率因数 (电流滞后电压 90° 相角)。	
轻负载	额定电流的 10%,额定电压和额定频率的 100%,0 功率因数(电流滞后电压 90° 相角)。	
电感负载 (滞后功率因 数)	额定电流的 100%,额定电压和额定频率的 100%,0.87 滞后功率因数 (电流滞后电压 30° 相角)。	

电能脉冲注意事项

测量仪的电能脉冲 LED 和脉冲输出能够在指定限值范围内产生电能脉冲。

描述	电能脉冲 LED	脉冲输出
最大脉冲频率	35 Hz	20 Hz
最小脉冲常量	每 k_h 1 次脉冲	
最大脉冲常量	每 k_h 9,999,000 次脉冲	

脉冲率取决于输入信号源的电压、电流和功率因数,以及相数、电压互感器变比和 电流互感器变比。

如果P总是瞬时功率(单位为kW),K是脉冲常量(单位为每kWh脉冲数),则脉冲周期为:

脉冲周期 (秒) =
$$\frac{3600}{\text{K x Ptot}}$$
 = $\frac{1}{\text{Mx-Mys}}$

电压互感器和电流互感器注意事项

总功率(P总)产生于次边的电压和电流输入值,并且考虑了电压互感器变比和电流互感器变比。

无论使用电压互感器还是电流互感器,均始终从次边来获取测试点。

如果使用电压互感器和电流互感器,则必须在计算公式中包含其一次和二次额定值。例如,在使用电压互感器和电流互感器的平衡 3 相星形系统中:

Ptot = 3 x VLN x
$$\frac{VT_p}{VT_s}$$
 x I x $\frac{CT_p}{CT_s}$ x PF x $\frac{1 \text{ kW}}{1000 \text{ W}}$

其中,P总 = 总功率,VT_p = VT 原边,VT_s = VT 次边,CT_p = CT 原边,CT_s = CT 次边,PF = 功率因数。

计算示例

此计算示例显示了如何计算功率、脉冲常量和最大脉冲频率以及如何决定可以降低最大脉冲频率的脉冲常量。

平衡的 3 相星形系统使用 480:120 伏 VT 和 120:5 安 CT。二次回路的信号电压为 119 伏相电压,电流为 5.31 安,功率因数为 0.85。所需的脉冲输出频率为 20 Hz (每秒 20 个脉冲)。

1. 计算典型的总输出功率 (P总):

Ptot = 3 x 119 x
$$\frac{480}{120}$$
 x 5.31 x $\frac{120}{5}$ x 0.85 x $\frac{1 \text{ kW}}{1000 \text{ W}}$ = 154.71 kW

2. 计算脉冲常量 (K):

K = 465.5 次脉冲/kWh

3. 在满载 (额定电流的 120% = 6 A) 和功率因数 (PF = 1) 时,计算最大总输出功率 (Pmax) :

Pmax =
$$3 \times 119 \times \frac{480}{120} \times 6 \times \frac{100}{5} \times 1 \times \frac{1 \text{ kW}}{1000 \text{ W}} = 205.6 \text{ kW}$$

4. 计算 Pmax 时的最大输出脉冲频率:

最大脉冲频率 =
$$\frac{\text{K x Pmax}}{3600}$$
 = $\frac{465.5 \text{ 次脉冲/kWh x } 205.6 \text{ kW}}{3600 \text{ 秒/小时}}$

最大脉冲频率 = 26.6 脉冲/秒 = 26.6 Hz

- 5. 根据 LED 和脉冲输出的限制,检查最大脉冲频率:
 - 26.6 Hz ≤ LED 最大脉冲频率 (35 Hz)
 - 26.6 Hz > 脉冲输出最大脉冲频率 (20 Hz)

注: 最大脉冲频率在 LED 电能脉冲的限制范围内。但是,最大脉冲频率大于脉冲输出电能脉冲的限制。脉冲输出频率大于 20 Hz 将使脉冲输出饱和,导致它停止发送脉冲。因此,在此示例中,您仅可将 LED 用于电能脉冲。

调整以支持脉冲输出时的电能脉冲

如果您要使用脉冲输出,则必须减小输出脉冲频率,使其位于限制范围之内。 使用上述示例中的值,脉冲输出的最大脉冲常量为:

$$K_{max} = \frac{3600 \text{ x (脉冲输出最大脉冲频率)}}{P_{max}} = \frac{3600 \text{ x } 20}{205.6}$$
 $K_{max} = 350.14$ 次脉冲/kWh

1. 将脉冲常量 (K) 设置为低于 Kmax 的值,例如,300 脉冲kWh。计算 Pmax 时新的最大输出脉冲频率:

新的最大脉冲频率 =
$$\frac{\text{K x Pmax}}{3600}$$
 = $\frac{300 \text{ 次脉冲/kWh x } 205.6 \text{ kW}}{3600 \text{ 秒/小时}}$ 新的最大脉冲频率 = 17.1 脉冲/秒 = 17.1 Hz

- 2. 根据 LED 和脉冲输出的限制,检查新的最大脉冲频率:
 - 17.1 Hz ≤ LED 最大脉冲频率 (35 Hz)
 - 17.1 Hz ≤ 脉冲输出最大频率 (20 Hz)

正如您所预期的一样,将 K 更改为低于 Kmax 的值之后,您可以将脉冲输出用于电能脉冲。

3. 在测量仪中设置新脉冲常量 (K)。

典型测试误差源

如果在精度测试期间发现误差过大,请检查测试设置和测试过程,以消除典型的测量误差源。

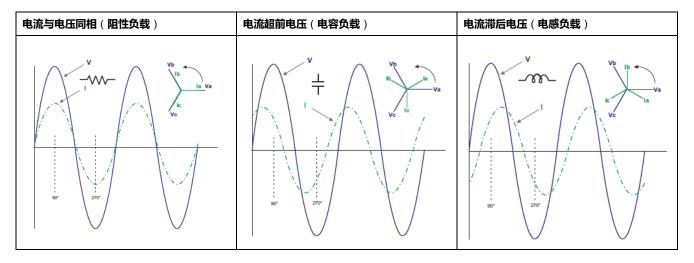
典型的精度验证测试误差源包括:

- 电压或电流电路的连接松动,通常由磨损的触点或端子造成。检查测试设备、电缆、测试装置和对其进行测试的测量仪。
- 测量仪的环境温度与23℃(73°F)相差太大。
- 相电压不平衡的任意配置中存在浮动(未接地)中性电压端子。
- 测量仪的控制电源不足,导致测量仪在测试过程中复位。
- 环境光干扰或光学传感器的灵敏度问题。
- 电源不稳定导致电能脉冲波动。
- 测试设置不正确:未将所有相连接到参考设备或电能标准。连接到被测测量仪的所有相应该同时连接到参考表计标准。
- 被测测量仪中存在湿气(冷凝湿度)、碎屑或污染。

功率、电能和功率因数

功率、电能和功率因数

在测量仪的电压和电流输入测得的样本测量结果提供用于计算功率和功率因数的数据。

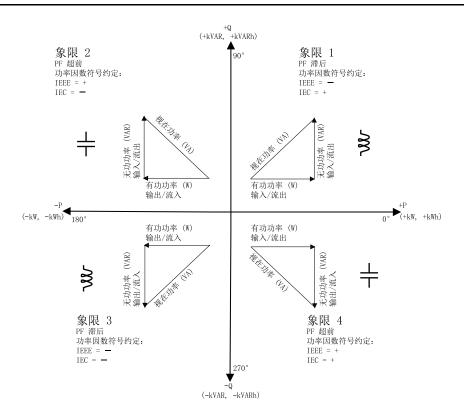

在一个平衡3相交流(AC)电力系统源中,载流导体上的交流电压波形相等但是到1/3周期时抵消(3个电压波形间的相角偏移为120°)。

电流相角与电压相角的偏移

电流可能会滞后、超前、或与交流电压波形同相,通常与负载类型有关——电感负载、电容负载或阻性负载。

对于纯阻性负载,电流波形与电压波形同相。对电容负载,电流超前电压。对电感负载,电流滞后电压。

下图显示在理想(实验室)环境下,各负荷类型的电压和电流波形如何偏移。


真实功率、无功功率和视在功率(PQS)

典型的交流电力系统负荷均具有阻性负载组件和无功(电感或电容)组件。

真实功率,又称有功功率(P),是阻性负载消耗的功率。无功功率(Q)是电感负载消耗或电容负载产生的功率。

视在功率(S)是测量的电力系统提供真实和无功功率的能力。

真实功率 P 的单位为瓦特(W 或 kW) ,无功功率 Q 的单位为乏(VAR 或 kVAR) ,视在功率 S 的单位为伏安(VA 或 kVA) 。

功率流

正真实功率 P(+)从电源流向负载。负真实功率 P(-)从负载流向电源。

功率因数 (PF)

功率因数 (PF) 是真实功率 (P) 与视在功率 (S) 之比。

功率因数(PF)为 -1 到 1 或 -100% 到 100% 之间的一个数字,符号由约定确定。

$$PF = \frac{P}{S}$$

纯阻性负载没有无功组件,因此其功率因数为 1 (PF = 1, 或单位功率因数)。感抗或容抗负载向电路中引入一个无功功率 (Q) 分量,从而导致 PF 接近 0。

真实 PF 和位移 PF

测量仪支持真实功率因数和位移功率因数值。

- 真实功率因数包括谐波分量。
- 位移功率因数仅考虑基本频率。

注: 如未指定,测量仪显示的功率因数为真实功率因数。

功率因数符号约定

功率因数符号(PF符号)可以为正或负,由IEEE或IEC使用的公约定义。可将用于显示屏的功率因数符号(PF符号)约定设置为IEC或IEEE。

PF 符号约定: IEC

PF 符号与真实功率 (kW)流动的方向相关:

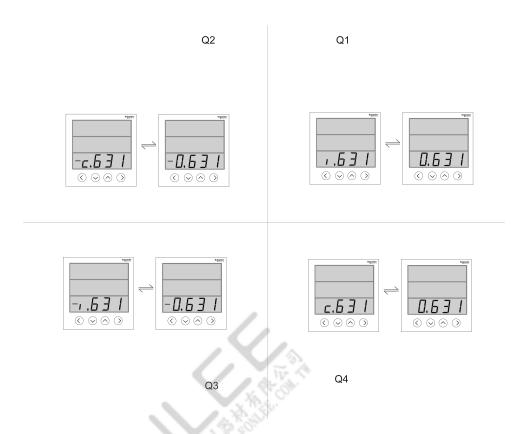
- 象限 1 和象限 4:对于正真实功率 (+kW), PF 符号为正 (+)。
- 象限 2 和象限 3:对于负真实功率 (-kW), PF 符号为负 (-)。

PF 符号约定: IEEE

PF 符号与 PF 超前/滞后约定相关,换句话说,即有效负载类型(电感负载或电容负载):

- 对于电容负载(PF超前,象限2和象限4),PF符号为正(+)。
- 对于电感负载(PF滞后,象限1和象限3),PF符号为负(-)。

PF 值显示


PF 值的第一位指示"滞后"和"超前"。

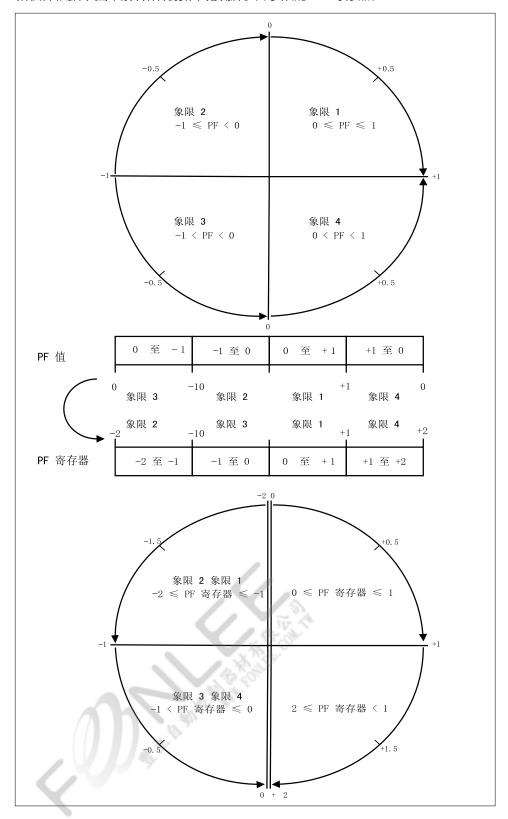
滞后由 PF 值第一位的"i"表示,超前由 PF 值第一位的"c"表示。

注: "i" = 电感负载/滞后 PF, "c" = 电容负载/超前 PF。

注: 没有负载时 PF 值显示为"----"

示例屏幕

功率因数最小最大值约定


测量仪使用特定的换算确定功率因数的最小和最大值。

对于负 PF 读数, PF 读数介于 -0 到 -1 之间,最小 PF 值为最接近 -0 的测量值。对于正 PF 读数, PF 读数介于 +1 到 +0 之间,最小 PF 值为最接近 +1 的测量值。

功率因数寄存器格式

测量仪可对 PF 值执行简单的算法,然后将其存储在 PF 寄存器中。

每个功率因数值(PF 值)占用功率因数的一个浮点寄存器(PF 寄存器)。测量仪和软件根据下图来解释所有报告或数据条目字段的 PF 寄存器。

PF 值是使用以下公式从 PF 寄存器值中计算得出的:

象限	PF 范围	PF 寄存器范围	PF 公式
象限 1	0至+1	0至+1	PF 值 = PF 寄存器值
象限 2	-1至-0	-2至-1	PF 值 = (-2) - (PF 寄 存器值)
象限 3	0至-1	-1至-0	PF 值 = PF 寄存器值
象限4	+1至0	+1至+2	PF 值 = (+2) - (PF 寄 存器值)

EasyLogic™ PM2100 系列 规格

规格

本节中包含的规格可能不经通知而更改。 有关安装和接线的信息请参考测量仪安装工作表。

机械特性

IP 保护等级 (IEC 60529-1)	前显示屏:IP54(使用可选配件套件 METSEIP65OP96X96FF 可升级至 IP65)
	测量仪壳体:IP30
面板最大厚度	最大值为 6.0 mm
安装位置	竖直
显示屏类型	LED 显示屏 — 7 段
键盘	3 键
前面板 LED 指示灯	绿色指示灯(心跳)串行通讯活动)
	红色指示灯(报警/电能脉冲输出)
重量	~ 300 g
尺寸WxHxD	96 x 96 x 73 mm (最大值)
继电器	A型2端子电子机械式继电器(仅限 PM2130)

电气特性

测量精度 - PM2110 和 PM2120

• IEC 61557-12: PMD/[SD|SS]/K70/1(用于1.3.0及更高版本的固件)

测量类型	符合 IEC 61557-12 的精度类别(用于 1.3.0 和更高版本的固件)	错误
有功电能	Class 1 (在 I _n = 5A 额定 CT 时符合 IEC 62053-21 的 Class 1)	±1%
无功电能	Class 2 (在 I _n = 5A 额定 CT 时符合 IEC 62053-23 的 Class 2)	±1%
视在电能	在 I _n = 5A 额定 CT 时为 Class 1	±1%
有功功率	等级 1	±1%
无功功率	等级 1	±1%
视在功率	等级 1	±1%
电流	等级 1	±0.5%
线电压	等级 1	±0.5%
相电压	等级 1	±0.5%
频率	等级 1	±0.05%
功率因数	等级 1	±0.01 计数
THD 和单个谐波	等级 5	±5%

测量精度 - PM2130

• IEC 61557-12: PMD/[SD|SS]/K70/0.5(用于1.3.0及更高版本的固件)

测量类型	符合 IEC 61557-12 的精度类别(用于 1.3.0 和更高版本的固件)	错误
有功电能	Class 0.5S(Class 0.5S,符合 IEC 62053-22,额定值 In = 5A 的 CT ³)	±0.5%

^{3.} 对于额定值为 1 A 的 CT,电流 50 mA 到 150 mA 的附加误差为 ±1 %,> 10 mA 到 < 50 mA 的附加误差为 ±2%。Class 0.5S 测量仪类型符合部分标准(仅关于电能测试的条款)

测量精度 – PM2130 (持续)

无功电能	Class 2 (在 I _n = 5A 额定 CT 时符合 IEC 62053-23 的 Class 2)	±1%
视在电能	在 I _n = 5A 额定 CT 时为 Class 0.5	±0.5%
有功功率	等级 0.5	±0.5%
无功功率	等级 1	±1%
视在功率	等级 0.5	±0.5%
电流	等级 0.5	±0.2%
线电压	等级 0.5	±0.2%
相电压	等级 0.5	±0.2%
频率	等级 0.05	±0.05%
功率因数	等级 0.5	±0.01 计数
THD 和单个谐波	等级 5	±5%

电压输入

参数	范围	
主电压互感器	999 kV L-L (最大值),启动电压取决于 VT 变比	
额定电压	277 V L-N / 480 V L-L	
满量程测量电压	35 - 480 V L-L (20 - 277 V L-N), CAT III	
	35 - 600 V L-L (20 - 347 V L-N), CAT II	
永久性过载	750 V AC L-L	
阻抗	≥ 5 MΩ	
频率	50 / 60 Hz 额定值 ± 5%	
VA 负荷	< 0.2 VA (240 V AC L-N)	

电流输入

参数	范围
CT额定值	原边可调节范围为 1 A 到 32767 A
	次边为 1 A 或 5 A I-额定值
测量电流	5 mA 至 6 A
抑制电流 (用于忽略微小负载)	5 mA 至 99 mA
耐受值	连续 12 A;50 A(10 秒/小时),500 A(1 秒/小时)
阻抗	$< 0.3 \text{ m}\Omega$
频率	50 / 60 Hz 额定值
VA 负荷	电流为 6 A 时 < 0.024 VA

交流控制电源 - PM2110/PM2120

参数	范围
工作范围	44 - 277 V L-N ± 10%
负荷	< 6 VA (277 V L-N)
频率范围	45 - 65 Hz
跨越时间	100 ms , 在 120 V AC 时
	400 ms,在 230 V AC 时

交流控制电源 - PM2130

参数	范围
工作范围	80 - 277 V L-N ± 10%
负荷	< 8 VA (277 V L-N)
频率范围	45 - 65 Hz
跨越时间	100 ms,在 120V AC 时(独立产品)
	50 ms,在 120 V AC 时,带有 IO 模块
	400 ms,在 230 V AC 时(独立产品)
	250 ms,在 230 V AC 时,带有 IO 模块

直流控制电源 - PM2110/PM2120

参数	范围
工作范围	48 - 277 V DC ± 10%
负荷	< 2 W (277 V DC)
跨越时间	50 ms , 在 125 V DC 时

直流控制电源 - PM2130

参数	范围
工作范围	100 - 277 V DC ± 10%
负荷	< 3.3 W (277 V DC)
跨越时间	100 ms,在 125 V DC 时(独立产品)
	50 ms,在 125 V DC 时,带有 IO 模块

显示屏更新

参数	范围
瞬时	1 s
需量	15 s
谐波	5 s

接线配置

用户可编程	通过 HMI 和 ION setup 配置	仅通过 ION setup 配置
	1相2线相电压	3相3线角接地三角形
	1相2线线电压	3相3线无接地星形
	1相3线线电压,含中性相(2相)	3相3线接地星形
	3相3线无接地三角形	3相3线阻抗接地星形
	3相4线接地星形	3相4线中心抽头式开放三角形
		3相4线中心抽头式三角形
	48	3相4线无接地星形
		3相4线阻抗接地星形

数字 I/O - PM2130

参数	范围
绝缘	2.5 kV RMS
数字(状态)输入	

数字 I/O - PM2130 (持续)

参数	范围
电压额定值	开 18 至 36 V DC
	关 0 至 4 V DC
数字输出	
负载电压	≤ 40 V 直流
负载电流	≤ 20 mA
开启电阻	≤ 50 Ω
数字输出的脉冲持续时间 4	[20、25、50、100] ms

模拟 I/O - PM2130

参数	范围
更新频率	1 s
模拟输入	
测量范围	4-20 mA
最大源阻抗	> 500 Ω
模拟输出	
测量范围	4-20 mA
负载阻抗	≤ 600 Ω

继电器 - PM2130

参数	范围
电压额定值	250 V AC / 2A
	24 V DC / 2A
输出频率	最大 0.5 Hz (1 秒开启 / 1 秒关闭)
转换电流	5A,250 V AC / 30 V DC (cos φ=1),10 万个周期
	2A,250 V AC / 30 V DC (cos φ=0.4),10 万个周期
	500 mA,250 V AC / 30 V DC,100 万个周期
激励电压	24V DC / 8 mA (最大值)

环境特性

工作温度	-10 °C 至 +60 °C (14 °F 至 140 °F)
存放温度	-25 °C 至 +70 °C(-13 °F 至 158 °F)
额定湿度	50 °C (122 °F) 条件下相对湿度为 5% 至 95% (无冷凝)
污染等级	2
海拔高度	≤ 2000 m (6562 ft)
位置	不适合潮湿的场所
产品寿命	>7年

^{4.} 指示该功能可以通过通讯配置。

EasyLogic™ PM2100 系列 规格

EMC(电磁兼容性)+3

静电放电	IEC 61000-4-2
辐射抗扰性	IEC 61000-4-3
快速瞬变抗扰性	IEC 61000-4-4
脉冲波抗扰性	IEC 61000-4-5
传导抗扰性	IEC 61000-4-6
磁场抗扰性	IEC 61000-4-8
电压骤降抗扰性	IEC 61000-4-11
辐射 (IEC61326-1)	CIPR 22 Class A
	FCC 第 15 部分 A 类

⁺³ 按照 IEC 61326-1 标准进行测试

安全性

欧洲	CE,根据 IEC 61010-1 第 3 版和 IEC 613261 - 1
美国和加拿大	cULus,符合 UL 61010-1
	CAN / CSA-C22.2 No. 61010-1 (600 V AC)
测量类别 (电压和电流输入)	CAT III 可以高达 480 V L-L
	CAT II 可以高达 600 V L-L
过压类别 (控制电源)	CAT III 可以高达 277 V L-N ± 10%
介电	符合 IEC / UL 61010-1 Ed-3
保护等级	Ⅱ,用户可接触部分双绝缘
其他认证	RCM

RS-485 通讯

端口数	1
最大电缆长度	1000 米(3280 英尺)
最大设备数量(单位负荷)	一条总线上最多为 32 个设备
奇偶	偶、奇和无(奇校验或偶校验为 1 个停止位,无校验则为 2 个停止位)
波特率	4800, 9600, 19200, 38400
绝缘	2.5 kV 真有效值, 双绝缘

脉冲输出

脉冲输出 (POP)	最大值 40 V DC, 20 mA
	可配置脉冲分量在 1 到 9999000 次脉冲/ k_h (kWh、kVAh 或 kVARh)

实时时钟

电池备用时间	3年
	注: 当已配置好日期和时间且测量仪处于关闭状态时。

中国标准合规性

本产品符合下列中国标准:

PM2110 / PM2120

IEC 61010-1:2010 Safety requirements for electrical equipment for measurement, control, and laboratory use - Part 1: General requirements

PM2130

IEC 61557-12:2018 Electrical safety in low voltage distribution systems up to 1 000 V AC and 1 500 V DC - Equipment for testing, measuring or monitoring of protective measures - Part 12: Power metering and monitoring devices (PMD)

Schneider Electric 35 rue Joseph Monier 92500 Rueil Malmaison France

+ 33 (0) 1 41 29 70 00

www.se.com

由于各种标准、规范和设计不时变更,请索取对本出版物中给出的信息的确认。

©2022年 - Schneider Electric. 版权所有